Implementation of a compute cluster for R/BUGS simulations

Maud Destrée
Alain Dalis
Will Talbot
Charles Castelain
UCB – IT Department

26 mai 10
Agenda

- Background
- Goal & Requirements
- Compute cluster architecture
- Changes in R code
- Conclusions and next steps
Background

- Statisticians run R/BUGS simulations on their laptops -> performance problems
- Not enough CPU available
- In case of BUGS “trap”, the simulations had to be restarted manually
- Upgrading the R/BUGS versions must be done on several machines
- Difficult to check simulations status from home
Goals & Requirements

- Remove heavy simulations from the laptops -> remote environment
- Increase the number of CPU available for BUGS simulations
- Window based environment to run WinBUGS 1.4
- Run simulations in batch mode
- Work on UCB environment from home
R code - Example

- Initialisation
 - data
 - initial values, contexts

- BUGS Simulations
 - “For” loop on contexts
 - “For” loop on Markov chains
 bugs(...)

- Final analysis
Initial investigation - Tests

- MPI (Message Passing Interface): library of functions for C or Fortran to execute program on distant computers

- RMPI: implementation of MPI for R

- bugsParallel: R module to allow starting multiple BUGS simulations on several processors

- Easy to implement

- Not robust enough in case of WinBUGS crash -> kill the process manually
Compute cluster

- Compute cluster: several (similar) computers grouped together in a (private) network in order to expedite calculations
- Job scheduler: manage queues of incoming requests and their priorities
 - Example
 - Simulation 1: Run
 - Simulation 2: Run
 - Simulation 3: Run
 - Simulation 4: Run
 - Simulation 5: Pending
- Master node: computer that receives the request and dispatch them to available processors on other computers, the compute nodes.
Cluster architecture (1)

- 3 servers bi-quad cores, 4GB RAM
- Job scheduler: LSF (Load Sharing Facilities - Platform Computing)
- 1 master node and 2 compute nodes
- Master node: 4 cores reserved for managing incoming requests
- 20 cores available for running R/BUGS simulations
- Shared drive on master node (250 GB)
Cluster architecture (2) - Client part

Access to cluster:
- LSF client: submit the simulations to the cluster, view simulation jobs running/pending, check servers status
- Windows Explorer: access to shared drive on cluster master node, launch simulation via DOS scripts

Client components are installed on Citrix server:
- Easy to upgrade LSF client
- No additional installation required in case of a new user
Changes in R code - Example

- Initialisation
 - data
 - initial values, contexts

- BUGS Simulations
 - "For" loop on contexts
 - "For" loop on Markov chains bugs(...)

- Final analysis
DOS script

```bash
SET SUBDIR=Project
SET JOBDIR=\BRABATBAP001\USERS\%USERNAME%\%SUBDIR%
SET LOGDIR=%JOBDIR%\Logs

SET NCTX=27

for /L %%i in (1,1,%NCTX%) do (  
    MD %JOBDIR%\%%i
    COPY %JOBDIR%\Data.txt %JOBDIR%\%%i\.  
    COPY %JOBDIR%\Init.txt %JOBDIR%\%%i\. 
)

bsub -J %SUBDIR%_[1-%NCTX%] -o %LOGDIR%\%SUBDIR%_%I.txt -Q 128 %JOBDIR%\Sim.bat
  -J Job name
  -o Output file name
  -Q Specify that the job must be requeued for the given error code
  Submit commands in Sim.bat as NCTX separate runs named Project_1, Project_2, ... Log files are located in Logs folder as Project_1.txt, Project_2.txt, ... Runs are requeued if the application exit with code 128.

pause
```
Define working directory in R code: JOBDIR is defined in DOS script, LSB_JOBINDEX is defined by LSF

```r
setwd(paste(Sys.getenv("JOBDIR"),"\\",Sys.getenv("LSB_JOBINDEX"),sep=""))
```

Make sure the R program can be restarted in case OpenBUGS crashes (no recovery possible with WinBUGS)

Optimize the use of memory:
- the BUGS model variables to be saved must be defined thoroughly
- Remove large R objects when not used
Summary

- Organize the simulations to take advantage of the compute resources: split the problem into several bunch of simulations that can run independently on the different servers

- DOS script:
 - create working directories for simultaneous runs,
 - define environment variables value used in R program,
 - start the simulations

- Adapt R program to run on the cluster:
 - working environment variables,
 - restart from intermediate results file
Conclusions & Next Steps

- Compared to previous environment, simulation times are divided by 5 at least
- OpenBUGS crashes are automatically restarted
- Software is installed on remote computers, no additional installation needed for a new user
- Explore solutions to start parallel BUGS simulations directly from R code: package RLSF is available under Linux
- OpenBUGS is very slow for complicated model: investigate other samplers and MCMC packages