

Using mixture priors for robust inference: application in Bayesian dose escalation trials

Astrid Jullion, Beat Neuenschwander, Daniel Lorand BAYES2014, London, 11 June 2014

Agenda

- Dose escalation in oncology phase I trial
 - Bayesian logistic regression model
 - EWOC criterion
- Meta-Analyic-Predictive Priors
 - Hierarchical model
 - Between-strata heterogeneity
 - Mixture prior
- Motivating example
 - Change of formulation within the dose-escalation phase
- Simulations
- Conclusions

Dose escalation in oncology phase I trial

Bayesian logistic regression model

Data

- For each tested dose d:
 - Number of evaluable patients : n_d
 - Number of dose-limiting toxicities (DLT) observed in the first cycle of treatment : r_d
- Bayesian logistic regression model (BLRM)

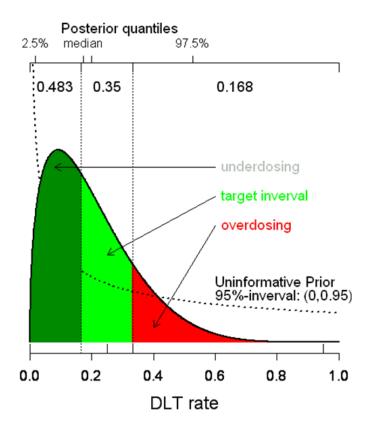
 $r_d | n_d \sim Binomial(\pi_d, n_d)$

$$logit(\pi_d) = \log(\alpha) + \beta \log\left(\frac{d}{d^*}\right)$$

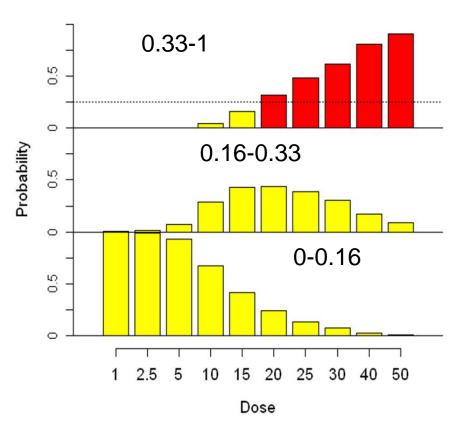
$$(\log(\alpha), \log(\beta)) \sim MVN_2(\mu, \Psi)$$

- With
 - π_d : DLT rate at a given dose, d
 - $\alpha, \beta > 0$
 - d*: scaling dose
 - μ : prior means (μ_a , μ_b)
- ³ Ψ : prior covariance matrix (composed of σ_a , σ_b and ρ)

U NOVARTIS


Dose escalation in oncology phase I trial EWOC criterion

- Bayesian modeling provides the posterior probability of DLT rate at each dose
- Toxicity intervals
 - <16% : underdosing</p>
 - 16%-33% : target toxicity rate
 - >33% : excessive toxicity
- Escalate with overdose control (EWOC) Babb et al, 1998
 - P(excessive toxicity) < 0.25
- Dose recommendation
 - Dose must satisfy the EWOC criterion
 - Dose with highest probability of DLT rate being in the target interval



Dose escalation in oncology phase I trial *EWOC criterion*

Posterior distribution of the DLT rate at one given dose

Interval Probabilities by Dose

Meta-Analytic-Predictive Priors

- In dose escalation studies, the use of complementary data may be justified.
 - For a study performed in a different population (Western -> Japanese)
 - For combination trials (information from single agent studies)
 - When different groups of patients with potentially different safety profiles need to be studied
 - Within a trial
 - Change in schedule
 - Change in formulation
- These complementary data are incorporated via Meta-Analytic-Predictive Priors.

Meta-Analytic-Predictive Priors Hierarchical model

 MAP prior for the parameter θ^{*} in a new trial is the conditional distribution of the parameter given the external data from S strata:

 $\theta^* | Y_1, \dots, Y_S$

- MAP priors are based on hierarchical model where the difference between strata is taken into account
- Let r_{d,s} and n_{d,s} be the number of patients with a DLT and total number of patients at dose d in stratum s:

 $r_{d,s}|n_{d,s} \sim Binomial(\pi_{d,s}, n_{d,s})$ $logit(\pi_{d,s}) = \log(\alpha_s) + \beta_s \log\left(\frac{d}{d^*}\right)$

• What is the prior for $\theta^* = (\log(\alpha^*), \log(\beta^*))$ in the new trial ?

Meta-Analytic-Predictive Priors Hierarchical model

Under the exchangeability assumption, we have:

 $(\log(\alpha_s), \log(\beta_s)) \sim MVN_2(\mu, \Psi), \qquad s = 1, \dots, S$

 $(\log(\alpha^*), \log(\beta^*)) \sim MVN_2(\mu, \Psi)$

where $\mu = (\mu_a, \mu_b)$ and Ψ is the between-strata covariance matrix with standard deviation τ_a , τ_b and correlation ρ .

The hyperpriors are:

 $\mu_{a} \sim N(\mu_{0a}, \sigma_{a}); \ \mu_{b} \sim N(\mu_{0b}, \sigma_{b})$ $\tau_{a} \sim logN(\tau_{0a}, log(2)/1.96); \ \tau_{b} \sim logN(\tau_{0b}, log(2)/1.96)$ $\rho \sim U[-1,1]$

Meta-Analytic-Predictive Priors

Between-strata heterogeneity

- The parameters τ_a , τ_b quantify the degree of between strata heterogeneity

Different degrees: small, moderate, substantial, large and very large

- Differential discounting for different strata is allowed.
 - Quality or relevance of external data may differ

Meta-Analytic-Predictive Priors Mixture prior

- The choice of the between-strata heterogeneity shoud be justified
- Scenarios are performed to check the dose recommendation with the chosen level of heterogeneity
- In case conflict between prior information and trial data is deemed possible, using mixture prior with a weakly informative component add robustness to the statisical inference
 - First component: MAP prior (output from the hierarchical modeling of historical data)
 - Second component: weakly informative prior
- Robust Mixture Prior: w x MAP-Prior + (1-w) x Weakly-Informative-Prior
 - w=0.8 for instance

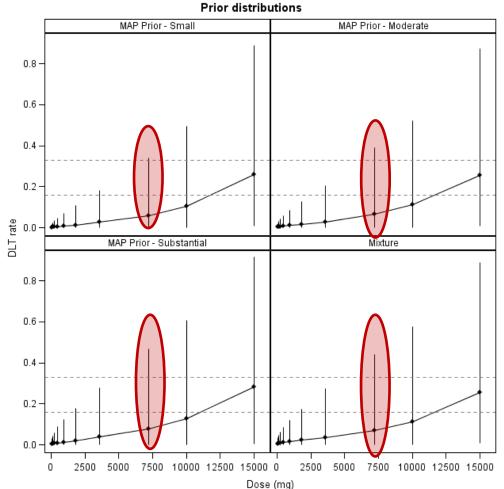
Motivating example Presentation of the case

- First dose escalation study in patients
- Change from capsule to powder in bottle (PIB)
- Small between formulation variability is a reasonable assumption
 - Same powder for capsule and PIB
 - Formulation study in dogs shows similar PK
- <u>Starting dose in PIB</u>: highest tested dose in capsules that satisfies the EWOC criterion, after having taken into account the between formulation variability
- Maximum increase of one step in the provisional dose levels:

120mg	240mg	480mg	960mg	1800mg	3600mg	7200mg	10000mg	15000mg
-------	-------	-------	-------	--------	--------	--------	---------	---------

Motivating example

Available capsule data at the time of the formulation change


Total dose/cycle:	120mg	240mg	480mg	960mg	1800mg	3600mg	7200mg
Number of patients	1	1	3	4	3	3	7
Number of DLTs	0	0	0	0	0	0	0

- Scenarios for the upcoming PIB cohorts will be performed considering:
 - Small, moderate, substantial between formulation variability
 - Mixture prior
 - Small between formulation heterogeneity: 0.8
 - Weakly informative prior : 0.2

Motivating example Prior

- Prior with small, moderate ad substantial between formulation variability
- Mixture: weakly informative + MAP (small between formulation variability)

Motivating example Results

 Hypothetical PIB data using prior from Capsule with different heterogeneity assumptions for MAP.

			Recommended dose					
	Dose (mg)	r/n	Small heterogeneity	Moderate heterogeneity	Substantial heterogeneity	Mixture		
Starting dose			7200	7200	7200	7200		
Scenario 1	7200	0/3	10000	10000	10000	10000		
Scenario 2	7200	1/3	10000	10000	7200	7200		
Scenario 3	7200	2/3	3600	3600	3600	3600		
Scenario 4	7200 7200	1/3 0/3			10000	10000		
Scenario 5	7200 7200 10000	1/3 0/3 0/3			10000	15000		

Motivating example Results

- Perform hypothetical scenarios to check the dose recommendations
- Using a mixture prior may allow to get more appropriate dose recommendations
- Discussion on these scenarios with the clinical team

Simulations Set-up

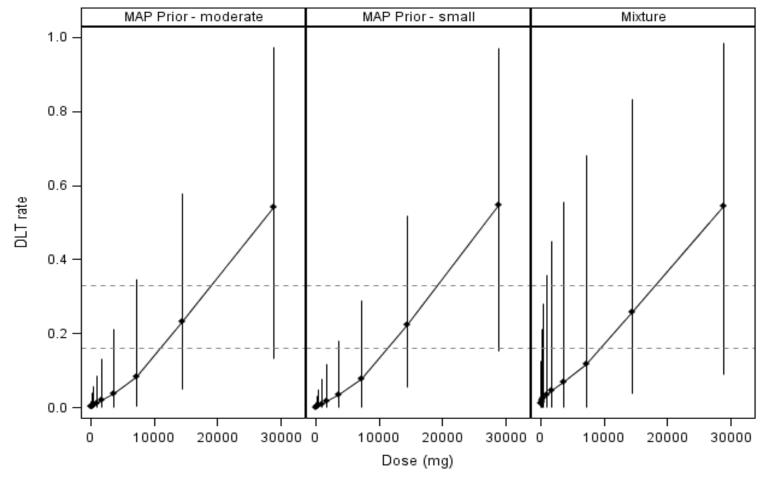
- Cohort of 3 patients
- Maximum of 10 cohorts
- MTD definition: highest dose such that
 - P(DLT)<0.33
 - EWOC criterion is satisfied : P (excessive toxicity < 0.25)

Trial stops when

- 1. At least 6 patients are treated at the recommended MTD, \tilde{d}
- 2. One of the following conditions is met:
 - 1. The probability of targeted toxicity at \tilde{d} exceeds 0.5
 - 2. Or a minimum of 18 patients have already been treated

Simulations Set-up

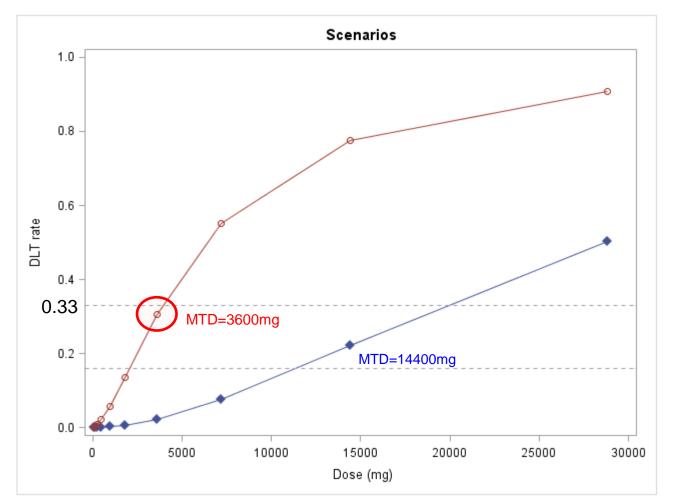
Available historical data


Dose(mg)	60	120	240	480	960	1800	3600	7200	14400	28800
Number of patients	1	1	1	3	3	3	3	3	6	3
Number of DLTs	0	0	0	0	0	0	0	0	1	2

- MAP prior with
 - Small between-trial heterogeneity
 - Moderate between-trial heterogeneity
 - Mixture prior:
 - Small between-trial heterogeneity (80%)
 - Weakly informative prior (20%)

MTD

Simulations Prior distributions


Prior distributions

U NOVARTIS

Simulations

Two true dose-toxicity scenarios

- Scenario 1: similar to the historical ones
- Scenario 2: highly dissimilar to the historical ones

NOVARTIS

Simulations

Results

- Percentage of MTD declaration at end of trial:
 - Under: at the declared MTD, DLT rate < 0.16
 - Correct: at the declared MTD, DLT rate in 0.16-0.33 (correct declaration)
 - Over: at the declared MTD, DLT rate > 0.33

Scenario	MTD estimation	Mixture: MAP and weakly informative	MAP - Moderate	MAP - Small
1	Under	31%	30%	26%
	Correct	69%	70%	74%
	Over	0%	0%	0%
2	Under	25%	4%	2%
	Correct	54%	57%	54%
	Over	21%	38%	44%

MTD estimation

- Other metrics are available:
 - Probability to recommend a dose with true P(DLT)>33% as the MTD
 - Probability to recommend a dose with true P(DLT)<16% as the MTD
 - Average proportion of patients receiving a target dose on study
 - Average proportion of patients receiving a dose with P(DLT)>33% on study
 - Average number of patients per study
 - Average number of DLT per study

UNOVARTIS

Conclusions

- MAP prior assume similarity (exchangeability) of historical and current parameters
- Using mixutre prior with a weakly informative component:
 - Safeguarding against unwarranted used of historical data
 - Allow for more robust inferences in case of prior-data conflict
 - Should be used whenever conflict between the prior information and the trial data is deemed possible

Recommendations:

- Perform scenarios : on-study dose recommendations are appropriate Individual ethics
- Perform simulations: long-run operating characteristics are satisfactory Group ethics
- Discuss these results with the clinical team

References

- Babb, Rogatko, Zacks (1998) Cancer Phase I clinical trials: efficient dose escalation with overdose control. *Statistics in Medicine*, 17:1103-1120
- Chen, Krailo, Sun, Azen (2009) Range and trend of the expected toxicity level (ETL) in standard A+B designs: A report from the children's oncology group. *Contemporary Clinical Trials*, 30:123-128.
- Goodman,Zahurak, Piantadosi (1995) Some practical improvements in the continual reassessment method for Phase I studies. Statistics in Medicine, 14:1149-1161.
- Joffe, Miller (2006) Rethinking risk-benefit assessment for Phase I cancer trials. Journal of Clincal Oncology, 24:2987-2990
- Le Tourneau, Lee, Siu (2009) Dose Escalation Methods in Phase I Cancer Clinical Trials. J Natl Cancer Inst 2009;101: 708-720

References

- O'Hagan (1979) On outlier rejection phenomena in Bayes inference. Jounal of the Royal Statistical Society, Series B, 41:358-367
- Neuenschwander, Branson, Gsponer (2008) Critical aspects of the Bayesian approach to Phase I cancer trials. Statistics in Medicine, 27:2420-2439
- Neuenschwander, Capkun-Niggli, Branson, Spiegelhalter (2009) Summarizing information on historical controls in clinical trials. *Clinical trials*, 7:5-18
- Rogatko, Schroeneck, Jonas, Tighioart, Khuri, Porter (2007) Translation of innovative designs into Phase I trials. *Journal of Clinical Oncology*, 25:4982-4986.
- Thall, Lee (2003) Practical model-based dose-finding in phase I clinical trials: methods based on toxicity. Int J Gynecol Cancer 13: 251-261

