Bayesian modelling for combination dose-escalation trial that incorporates pharmacokinetic data

Daniel Lorand (Oncology Early Clinical Biostatistics, Novartis)

Bayes 2015 - May 20, 2015
Topics covered

- Rationale for novel modelling approach
- Bayesian dose exposure model
 - Definition
 - Integration into dose-escalation decision process
- Robust prior derivation
- Implementation in PhI studies at Novartis
- Conclusion
Background

- Phlb combination dose-escalation trials: both drugs may be novel, both drugs may be escalated

- Two types of drug-drug interactions (DDI)
 - **Safety DDI:**
 - Increased/decreased DLT rate from that expected as monotherapy
 - BLRM models dose-DLT relationship and estimates safety DDI
 - **PK DDI:** exposure of one or both drug(s) are increased/decreased from that expected as monotherapy
 - Link between PK DDI and safety DDI can be complex
 - PK DDI may explain only parts of overall safety DDI
 - Safety DDI can be seen without PK DDI

- How to incorporate PK information in a robust way into dose escalation decision?
Bayesian dose-DLT model

Current use of PK data for dose selection

PK data are already used in the decision

- DLT rate prior
- Dose-DLT data
- DLT rate posterior

Bayesian dose-DLT model (safety DDI)

- DLT escalation rules

- PK data
- Other data
- Clinical expertise

Model recommended dose

Dose escalation decision
Adding Bayesian dose-exposure models

New use of PK data for dose selection
Evolution in dose-escalation paradigm

- New primary objective: identify ‘safe’ dose with desired exposure

- Combine outputs from independent modeling of dose-DLT and dose-exposure relationships to establish RDE/RP2D* with optimal exposure of both agents

- Safety comes first! Highest doses allowed by Bayesian Logistic Regression Model (BLRM) following Escalation With Over-dose Control (EWOC) principle to control risk of over-toxicity

- Desired exposure driven by safety, pharmacodynamic and clinical activity (especially true for new targeted therapies with safer profile)

- Feasible since PK measured in all trials. Can be tailored to more complex settings

- Doesn’t prevent escalation to proceed on the basis of safety data only (when PK data not available and not critical for next decision)

* RDE=Recommended Dose for Expansion / RP2D=Recommended Phase II dose
Added value of integrating dose-exposure modelling

Simulation study [details in Cotteril (2015)]

- **Decrease subjectivity** of its use
- **Increase efficiency** of decision process
 - Escalation paths more varied and escalation of both drugs more likely
- **Increase precision** of the resulting dose recommendation
 - Less dose pairs declared as the final recommended dose
- **Minimise** number of patients treated at **sub-optimal dose levels**
 - Escalation faster when negative DDI
- **Minimise** number of patients **overdosed**
 - Escalation more cautious when positive DDI
One BLRM + two dose-exposure models

- 5-parameter BLRM for combination is used [Neuenschwander (2014)]
- Empirical bayesian dose-exposure model for each compound A and B:

\[
\log(pk_{A_{dA,dB}}) = \varphi_{1A} I_{(dB=0)} + \varphi_{2A} \log(dA/dA^*) + \varphi_{3A} I_{(dB>0)} + \varphi_{4A} \log(1+dB/dB^*) + \varepsilon_A
\]

«single-agent» models

Dose-independent Interactions

Dose-dependent Interactions

\[
\log(pk_{B_{dA,dB}}) = \varphi_{1B} I_{(dA=0)} + \varphi_{2B} \log(dB/dB^*) + \varphi_{3B} I_{(dA>0)} + \varphi_{4B} \log(1+dA/dA^*) + \varepsilon_B
\]

\[\varepsilon_A \sim N(0, 1/\tau_A^2)\]

\[\varepsilon_B \sim N(0, 1/\tau_B^2)\]
Defining target exposures

- Exposures at s.a. RP2Ds but could be lower (e.g. if indicated by preclinical studies)

- Define relevant posterior summaries for each combination of interest:
 - Mean/median exposures (with probability intervals)
 - Probabilities of under/over exposure
 - Distance between posterior distribution of exposures and target exposures

- Identify ‘safe’ combinations (as per EWOC) that allow to reach predefined target exposures for both drugs

- If there is too much uncertainty about target exposure, better not to use target exposure. Instead rely on estimates to learn about DDI
Illustration: exposure of drug A decreased when combined with drug B

- No DLTs in first cohort of patients treated at A=10mg, B=200mg → BLRM allows escalation to either 30mg of drug A or 300mg of drug B
- Modelling of PK data suggest dose independent DDI requiring escalation of drug A well beyond s.a. RP2D of 30mg to achieve target exposure

Posterior mean exposure of Drug A (with 95%CI)
Prior building and robustification

- A 4-step approach to combine all sources of prior information

- Step 1: leverage single agent data (+ relevant combination data)
 - Fit bayesian models (using non-informative priors) to obtain informative priors for s.a. parameters ϕ_1, ϕ_2 and for inter patient variability ϵ
 - Non-informative priors obtained for parameters related to DDI
 - Down-weight posterior variances so that effective sample size corresponds to moderate/substantial heterogeneity between historical data and on-study data (meta-analytic-predictive prior can also be used)
 - PK information may only be available in external publication as summary statistics
Step 2: integrate DDI predictions from PB/PK modelling:

- Simcyp is a population-based simulator:
 - Incorporates numerous databases containing human physiological, genetic and epidemiological information.
 - Allows to integrate this information with in vitro and clinical data to predict PK behavior in ‘real-world’ populations.
- Used to adapt parametrization of empirical Bayesian model to likely mechanism of DDI
- Build informative priors for all parameters, including those related to DDI: φ_3, φ_4 and also ε
 - Use PB/PK model to simulate pkA and pkB for virtual patients
 - Fit bayesian models on pkA and pkB (using non-informative priors)
 - Down-weight posterior variances so that effective sample size corresponds to substantial/large heterogeneity between PB/PK DDI predictions and DDI in trial population
Prior building and robustification (cont.)

- **Step 3:** build a non-informative (NI) prior for all parameters:
 - Same as Simcyp prior but with further down-weighting so that effective sample size corresponds to one observation

- **Step 4:** combine 3 priors in a mixture that provides good behavior to the model even when conflict between prior and data
 - Define prior weights, e.g. 0.4, 0.4 and 0.2 for SA, Simcyp and NI priors, respectively
 - Prior weights are updated into posterior weights when model is updated with data
Implemented in 6 Novartis Oncology PhI trials so far

- 5 combinations trials (where significant PK DDI is expected) / 1 single agent trial (RP2D expected to have similar exposure than competitors)

- Selected PK parameters are co-primary or key secondary endpoints

- Flexible wording regarding the recommendations provided by the Bayesian dose-exposure model

- Estimated exposures provide additional information to further guide the dose selection

- No additional constraint on the dose escalation:
 - For later cohorts, the dose escalation may occur without having the full PK data available, on condition that the EWOC criterion is met
 - Higher escalation step allowed when negative PK DDI

- No challenge from HA and IRBs so far
Concluding remarks

- **Evolution** from current dose-escalation paradigm since the identification of the RDE/RP2D gives more weight to non-DLT data

- Current approach benefited from **cross functional collaboration** (biostatistics, clinical pharmacology, drug metabolism & pharmacokinetics, clinical)

- Requires an **early and close collaboration** at project team level
 - DDI risk should be discussed and addressed early in protocol concept

- Requires more time to set up but lead to design with **increased efficiency**

- Method is still novel and adaptations are expected from learnings during execution phase of trials

Acknowledgments

- Astrid Jullion, Arun Kumar, David Demanse, Hiya Banerjee, Rupam Pal, Mounir Aout, Zhonggai Li, Duan Raina (Oncology Early Clinical Biostatistics)

- Beat Neuenschwander and Sebastian Weber (Oncology Statistical Methodology)

- Christophe Meille (Oncology Clinical Pharmacology)

- Felix Huth (Oncology Drug Metabolism & Pharmacokinetics)
Back-up
Illustration of mixture prior

Mixture for dose-independent DDI parameter

Posterior weights when data aligned with Simcyp prior
prior weights: 0.4(SA), 0.4(Simcyp), 0.2(NI)