Applications of robust MAP priors in quantitative trial design

B Magnusson, H Schmidli
Statistical Methodology and Consulting
Novartis Pharma AG
Bayes Pharma – 21 May 2015
Introduction

Methodology and overview

- **Context:**
 - Planning Novartis early development clinical trials
 - Desire to incorporate historical control information

- **Methodology:**
 - MAP priors commonly used to obtain equivalent sample size (Neuenschwander et al. 2010)
 - Concerns about prior-data conflict and analytical intractability
 - Mixture priors of conjugate distributions are appealing in this setting (Schmidli et al. 2014)

- **Application:**
 - Case study from infectious disease proof of concept study design
 - Mixture prior approach fully implemented in design and analysis
Overview

- New compound intended to treat an infection and its resulting disease
 - Infection is common (>50% world-wide)
 - Latent infection – immune system fails to clear the virus

- Most infections are asymptomatic or mild but significant disease can appear in at-risk persons
 - Bacterial and fungal infections
 - Deafness/blindness
 - Mental retardation
 - Death

- Currently available therapies are efficacious, but also associated with serious toxicities
 - Neutropenia, thrombocytopenia, seizures, anemia
 - Carcinogenicity/teratogenicity in animals
Disease prevention and treatment

Treatment strategies for patients at risk

- Due to mortality and morbidity associated with infection/disease, most common strategy is preventative treatment

- **Prophylaxis:**
 - Therapy given during period of highest risk to prevent virus growth

- **Preemptive:**
 - Therapy initiated after virus is detected (viral load exceeds given threshold) but before disease develops

- Prophylaxis more efficacious than preemptive strategy, but also associated with increased risk of toxicity
ABC123

Background and high-level study design

- Novel compound (ABC123) has the potential to be used in a prophylaxis setting
 - Well tolerated in preclinical toxicity studies at 10 times highest (expected) human dose
 - Well tolerated in first-in-human healthy volunteer study

- First clinical study in patients – randomized, double-blind, placebo-controlled
 - Evaluate efficacy, safety and PK of ABC123 when given as a prophylaxis
 - Recruit patients that are at relatively high risk of infection
 - Goal is to prevent infection, i.e. prevent viral loads from reaching a pre-defined threshold
 - If this threshold is reached, then treat patients with standard-of-care
 - Placebo-controlled study is ethical in this setting
ABC123 patient study

Key statistical aspects of study design

- **Primary endpoint is binary (infection yes/no)**
 - Efficacy represented in terms of relative risk p_T/p_C

- **Use beta-binomial (conjugate) model for analysis**
 - Non-informative Beta(1/3,1/3) prior for p_T
 - Informative prior on p_C based on historical data (details to follow)
 - Prior mean 0.41 and 90% CI (0.21,0.64) – Effective sample size 42

- **3:1 randomization ratio in favor of ABC123 with total N = 64**

- **Quantitative PoC criteria:**
 1. Posterior probability that $p_T/p_C < 1$ is at least 0.9
 2. Posterior probability that $p_T/p_C < 0.5$ is at least 0.5

- **Outcomes**
 - 1) and 2): “Positive result”
 - Neither 1) nor 2): “Negative result”
 - 1) or 2), not both: “Indeterminate”
Meta-analysis for the placebo arm

Mathematical model

- **Mathematical setup for H historical studies:**

 \[r_h \sim \text{Binomial}(p_h, n_h), \quad \text{logit}(p_h) \sim N(\mu, \tau^2), \quad h = 1, \ldots, H \]

 Priors: \(\mu \sim N(0, 1\varepsilon 10) \) and \(\tau \sim \text{Half-Normal}(0, 1) \)

 Prediction for this study: \(\text{logit}(p^*) \sim N(\mu, \tau^2) \)

- **6 similar historical studies with 747 total placebo patients**
 - Pooled mean event rate = 40%

- **JAGS** used to simulate draws from prior predictive distribution of \(p^* \)

- **Forest plot** shows results of this analysis
Meta-analysis for the placebo arm

Robust mixture priors

- Distribution for p^* approximated with a mixture of beta priors

- Reasonably good approx. with ≥ 2 components

\[
\begin{align*}
 w_i^* &= \frac{w_i C_i}{\sum_j w_j C_j} \\
 C_j &= \frac{B(a_j + y_C, b_j + n_C - y_C)}{B(a_j, b_j)}
\end{align*}
\]

\[
p_C \sim \sum_{i=1}^{3} w_i \text{Beta}(a_i, b_i)
\]

\[
\Rightarrow p_C | Y_C = y_c \sim \sum_{i=1}^{3} w_i^* \text{Beta}(a_i + y_C, b_i + n_C - y_C)
\]
Meta-analysis for the placebo arm

Robust mixture priors

- Distribution for p^* approximated with a mixture of beta priors
- Reasonably good approx. with ≥ 2 components
- Final prior is 3-component beta mixture:
 - $0.64 \times \text{Beta}(19.49, 28.80)$
 - $+ 0.31 \times \text{Beta}(3.88, 5.11)$
 - $+ 0.05 \times \text{Beta}(1, 1)$
 - ‘Simpler’ prior chosen at the time for pragmatic reasons
 - Extra weakly-informative component added for ‘robustification’

\[w_i^* = \frac{w_i C_i}{\sum_j w_j C_j} \]
\[C_j = \frac{B(a_j + y_C, b_j + n_C - y_C)}{B(a_j, b_j)} \]
\[p_C \sim \sum_{i=1}^{3} w_i \text{Beta}(a_i, b_i) \]
\[\Rightarrow p_C | Y_C = y_C \sim \sum_{i=1}^{3} w_i^* \text{Beta}(a_i + y_C, b_i + n_C - y_C) \]
Meta-analysis for the placebo arm

Robusness

- ‘Robustified’ MAP prior responds with greater flexibility to prior data conflicts
- Number of components not too influential in this context (as long as \(\geq 2 \))
Meta-analysis for the placebo arm

Placebo sample size

- Effective sample size of prior computed as in (Morita et al. 2008)
 - ESS = Sample size such that expected information of the posterior under a non-informative prior is the same as the information of the robust MAP prior
 - In our case = 42

- Considerable information for placebo

- Decision: 16 placebo patients
 - Allow meaningful comparison on secondary endpoints and safety
 - Maximize prior predictive probability of observing a placebo event rate in the 90% predicted interval for p^*
Primary analysis

Statistical model and PoC criteria

- Primary endpoint is binary (infection yes/no)
 - Efficacy represented in terms of relative risk \(p_T / p_C \)

- Use beta-binomial model for analysis
 - Non-informative Beta\((1/3,1/3)\) prior for \(p_T \)
 - Informative prior on \(p_C \) based on historical data (details to follow)
 - Prior mean 0.41 and 90% CI \((0.24, 0.64)\) – Effective sample size 42

- 3:1 randomization ratio in favor of ABC123 with total \(N = 64 \)

- Quantitative PoC criteria:
 1. Posterior probability that \(p_T / p_C < 1 \) is at least 0.9
 2. Posterior probability that \(p_T / p_C < 0.5 \) is at least 0.5

- Outcomes
 - 1) and 2): “Positive result”
 - Neither 1) nor 2): “Negative result”
 - 1) or 2), not both: “Indeterminate”
Trial outcomes

Visualizing outcome vs. success/failure

- With a binary endpoint we can tabulate (or plot) trial outcomes ahead of time
- Quantitative success criteria can be fine-tuned via visualization
- This illustration quite useful for clinical colleagues as a ‘gut-check’ of success criteria
Operating characteristics

3:1 randomization – 64 total evaluable subjects

- Probability of negative result is usually <0.2 (at ABC123 ≤0.2)
- Probability of positive result usually >0.8 (at ABC123 ≤0.15)
- Robust OC for range of true placebo event rates (0.35-0.5)
Operating characteristics

3:1 randomization – 64 total evaluable subjects

- Probability of negative result is usually <0.2 (at ABC123 ≤0.2)
- Probability of positive result usually >0.8 (at ABC123≤0.15)
- Robust OC for range of true placebo event rates (0.35-0.5)
Interim analysis

Quantitative futility criterion

- Team desired IA with option to terminate study based on futility
 - Analysis conducted with 50% planned sample size
- Futility defined as <0.1 predictive probability of achieving positive or indeterminate trial result

\[
Pr(\text{Pos or Ind} \mid \text{data}) = \int Pr(\text{Pos or Ind} \mid \theta)p(\theta \mid \text{data})d\theta
\]

\[
\theta = (p_C, p_T)
\]
Conclusion & discussion

- Clinical trial team was enthusiastic about the methodology
 - “Bayesian” seems popular
 - Saving placebo patients was an attractive option

- MCMC distribution can be approximated with few (≥2) mixture components

- Additional possibilities not included in final design
 - IA readout for efficacy
 - Re-estimation of placebo sample size at IA

- Choosing the placebo sample size was not straightforward
 - Some confusion about “confirming” the meta analysis

- Usefulness of graphs for illustration
 - Trial outcomes, predictive power, etc.
References

