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Tailoring Treatment to a Patient’s Characteristics
Testing Several Arms in Few Patients

• FDA approved several cancer drugs for use in patients whose tumours
have specific genetic characteristics (identified by a diagnostic test).
Also, for cystic fibrosis patients with a specific genetic mutation.

• This has strengthened the promise of“personalised medicine”- the
tailoring of treatment to the individual characteristics of each patient.

• The challenge is how can we answer which patients respond
differently to a treatment in contexts in which there are several
promising new treatments and relatively few patients to test them -
even fewer patients if a treatment works only within a subgroup.

• Research for personalised medicine requires methodology for trial
design to identify superior treatments among several arms more
quickly, mainly treatments that work better within subgroups.



Response-adaptive Randomisation and Covariates
Assigning More Patients to Better Treatment based on their Profile

• Response-adaptive randomisation (RAR) alters the allocation
probabilities based on observed outcomes up to that patient.

The usual goal is to achieve some ethical or statistical objective.

• Covariate-adjusted Response-adaptive (CARA) alters the allocation
probabilities given observed outcomes and covariates and the current
patient’s covariate profile.

CARA designs can benefit patients (in case of a treatment-covariate
interaction) by skewing the allocation probabilities to the better
performing treatment among patients with a similar covariate profile.

! Note that CARA early covariate-adaptive methods (1970s) try to
induce balance between treatment groups with respect to covariate
margins: Pocock and Simon (1975); Taves, D. R. (1974); Wei, L.J.
(1978). Balance does not lead to efficiency or ethically attractive
designs (Rosenberger and Sverdlov, 2008).



Limitations of Existing CARA Procedures
Developing Efficient Non-myopic Randomised CARA Procedures

(1) Almost all RAR procedures are myopic - be they Bayesian or not -
adapt based on past data only and not potential future data.

Forward looking RAR procedures are computationally expensive and
deterministic. Recent work proposed a randomised tractable
non-myopic RAR algorithm using bandit theory. Villar et al (2015)

(2) RAR procedures with ethical goals have considerably higher variability
(low power) and other estimation issues (Villar et al , 2015).

E.g. CARA procedure Rosenberger, Vidyashankar and Agarwal (2001)

• In Villar and Rosenberger (2018) we develop a non-myopic CARA
procedure with patient benefit advantages which is:

computationally feasible (implementable);
randomised (selection bias control);

efficient in the multi-armed case (high power);
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The Multi-armed Bandit Problem and the Gittins Index
Introducing Randomization to Bandit Strategies

• The multi-armed bandit problem (MABP): optimal allocation of
treatments to patients with an overall patient benefit goal.

• The Gittins Index (GI) (Gittins and Jones, 1979) is a tractable rule
that recovers the (intractable) optimal solution to the MABP.

Both the MABP and the GI use a Bayesian updating procedure.

• Despite its tractability and considerable ethical advantages a main
barrier to its use is the lack of randomisation of treatment allocations.

• Villar et al (2015) defined a block randomised procedure based on
the GI. FLGI allocation probabilities: πk,j , the probability of
allocation to treatment k at stage j - common to all patients in block
j- when using the GI and given observed responses up to block j-1.



The Forward Looking Gittins Index
Introducing Randomization to the Gittins Index Rule

Assume that T patients arrive sequentially in blocks of size b over J
stages, so that J × b = T . In Villar et al (2015) we defined group
allocation probabilities based on the Gittins Index (GI) rule as follows:
Simplest example: b = 2. Priors: control (s(0,0), f(0,0)) = (1, 2) and experimental (s(1,0), f(1,0)) = (1, 1)

j = 1,
G1(1, 1) = 0.8699
G0(1, 2) = 0.7005

j = 2,
G1(1, 2) = 0.7005
G0(1, 2) = 0.7005

1
2

Y1,0 = 0

j = 2,
G1(2, 1) = 0.9102
G0(1, 2) = 0.7005

1
2

Y1,0
= 1

What is the (patient-average) probability of each arm being allocated in the next block using the GI (and given the priors)?

π1,0 =
(0 × 1) + (0 × 1/2 + 1/2 × 1/2)

2
= 1/8 , π1,1 =

(1 × 1) + (1 × 1/2 + 1/2 × 1/2)

2
= 7/8.
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FLGI Probabilities: Computation & Properties
A Non-myopic Group Randomised Procedure

C Just as for the MABP, the computational cost of the exact FLGI
probabilities grows with the number of arms (K ) and b (block size).

Computation in practice can be done via Monte Carlo simulation.
Example: P = [1 1 ; 2 1 ; 1 2 ; 2 2] (K = 4) and block b = 9 then
π ≈ [0.2646 ; 0.5901 ; 0.0246 ; 0.1208] after 5 ∗ 102 replicas.

P1 For equal priors the algorithm defines equal allocation probabilities.

P2 As the block size tends to grow (in the limit it equals the trial size),
the design tends to a balanced design (given initial equipoise).

P3 If the block is of only 1 patient (i.e. there is an interim after every
patient), the FLGI rule recovers the GI rule.



Introducing Covariates to the Gittins Index Rule
Deriving a CARA FLGI Rule

(1) We consider a MABP with K experimental arms, a control arm and
T patients. Before arm k is allocated to patient t, a binary covariate
Zt is observed. Immediately after, a binary response Yt,n is observed.

(2) Reformulate the above MABP: for every treatment-covariate
combination there exists a combination arm kz . E.g., the arm “00”
corresponds to the control arm and covariate negative patients.

New reformulated MABP has 2 (K + 1) combinations arms (with rate
pkt) and patients are optimally allocated to arms with the constraint
that they are only allowed arms feasible given their biomarker profile.

(3) We defined a modified GI rule: each patient gets the treatment with
the highest GI among the arms available for their biomarker profile.

(4) From this modified GI, a randomised group allocation procedure is
defined as in Villar et al (2015) but for every covariate value (and
block) we have a different vector of allocation probabilities πk,j(Z ).
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The CARA FLGI in Practice
Simulation Results

3-arm trial 300 patients pk0 = (0.22; 0.34; 0.49), pk,1 = (0.47; 0.71; 0.37).
Treatment-covariate interaction: best arm for covariate negative patients
is arm 2 while for covariate positive patients is arm 1.

Power Patient Benefit
(1− β0) (1− β1) p∗0 (s.d) p∗1 (s.d) ENS (s.d)

ER (b=300) 0.77 0.69 0.33 (0.04) 0.33 (0.04) 132.01 (8.4)
Thompson (b=10) 0.71 0.75 0.49 (0.09) 0.59 (0.09) 149.28 (9.5)

CARA C FLGI (b=10) 0.82 0.88 0.52 (0.13) 0.64 (0.05) 151.44 (9.4)
CARA FLGI (b=10) 0.24 0.06 0.78 (0.18) 0.89 (0.13) 171.25 (11.2)

CARA GI (b=1) 0.08 0.04 0.70 (0.29) 0.94 (0.06) 171.42 (11.5)

CARA FLGI probabilities (Monte Carlo simulation), T = 300, pz = 0.5 and 5000 runs.

• Treatment-covariate interactions are detected by the CARA
(Covariate-Adjusted Response Adaptive) FLGI procedure but its
statistical power is very low.

• In a multi-armed case the CARA CFLGI addresses the power
limitation (though in a two-arm setting power may be insufficient).
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Discussion & Extensions
Trials for Personalised Treatment & Including Patient Benefit Goals

• Derivation of the CARA FLGI probabilities is considerably more
complex than competing methods yet its implementation is as
feasible as other methods.

• Non-myopic methods offer increased patient benefit (quickly identify
best arm) yet have lower power. Power may be improved in a
two-armed context at the expense of patient benefit gains.

• Multi-armed trials simulations: patient benefit increases with the
number of arms and a protected method achieves both power-ethical
advantages (“protecting allocation to control arm” - CARA CFLGI).

• Extensions: polychotomous (every treatment-covariate combination
as an arm) and multiple covariates (redefine all the covariates into a
single covariate with multiple stratification levels as an arm).

• Fully Bayesian CARA FLGI: larger patient benefit/efficiency gains if
historical data is combined with the RAR through the initial prior.
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