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Environmental epidemiology

• Effect of environmental exposures on health conditions

• Used in the definition of health care policies and interventions

• Exposures: air and water pollutants, individual and ambient
concentrations

• Risk assessment: health conditions and development of diseases

• High throughput molecular data: omics data (metabolome, genome,
transcriptome,...)
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Environmental epidemiology and the exposome

Figure: Overview of the exposome1

1Rappaport and Smith, 2010.
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Measurement error in environmental exposures

• Particulary challenging on Traffic Related Air Pollution (TRAP)

• Different sources of ME:

- Instrument imprecision
- Difference between ambient concentration and individual

exposure
- Difference between average personal exposure (at home/work

address,...) and actual individual exposure

• Mostly classical error
W = X + U

U ∼ N(0, σ2em I)
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Bayesian measurement error models

Figure: Graphical structure of the error models: X is the true covariate, W is the
error-prone proxy, Z is an exact observable covariate and Y is the response2.

2Muff et al, 2015.
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Bayesian measurement error models

• Level 1: regression model Y |v ,θ1 of the response variable Y as if X were
observed, depending on unknown parameters v and hyperparameters θ1

• Level 2: latent error model X |W ,θ2 depending on hyperparameters θ2

• Level 3: priors defined for the hyperparameters (θ1,θ2)
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Oxford Street II Study

• Randomized cross-over trial

• Part of Exposomics consortium

• 60 volunteers walking in Hyde Park (traffic free) and Oxford Street
(highly polluted)

• 3 measurements per walking session: 6 measurements per individual

• Volunteers divided in three groups: healthy (20), COPD (20), IHD
(20)

• Information on age, sex, BMI, caffeine intake, ...

• TRAP assessment: PM10, PM2.5, CBLK , UFP and NO2

• Omics measurements: metabolomics, transcriptomics and
adductomics
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Model on TRAP and metabolomic signals
• On each pollutant
• 5749 metabolic features: selected features based on previous studies
• Fixed effects: sex, age, BMI, disease, caffeine intake

mij ∼ N(µij , σ
2
e )

µij = α + β>Xij + βexpoEij + IDi + T ∗ Lij
• E = exposure to pollutant

Figure: Bayesian formulation of the basic model to assess association between
metabolic levels and TRAP exposure.
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Measurement error on TRAP model
• ME on exposures

mij ∼ N(µij , σ
2
e )

µij = α + β>Xij + βexpoEij + IDi + T ∗ Lij
Wij = Eij + Uij

Uij ∼ N(0, σ2U)

• Normal priors to regression coefficients
• Inverse gamma priors to precisions of random effects

Figure: Bayesian formulation of the classical error model. Xi is the set of
observed covariates for individual i, Exposurei is not observed, Wi is the observed
proxy for the exposure
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Dependency across omic signals

• Metabolic features are not independent in the same individual

• Multivariate response in the Bayesian model

m ∼MVN(0,Σ)
m(1)
m(2)
...

m(n)

 = µ + Xβ + βexpoE + Zr

W = E + U

• Wishart prior for Σ
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Dependency across different exposures

• TRAP exposures are not independent on the same individual and
location

• Correlated exposures in the Bayesian model

m ∼MVN(0,Σ)
m(1)
m(2)
...

m(n)

 = µ + Xβ + βexpo1E1 + βexpo2E2 + ...+ βexponEn + Zr

W = E + U

Multivariate Bayesian models 10



Naive vs error-corrected BHM

Figure: Regression coefficients with and without error modeling in JAGS. A
classical and a Berkson error are assumed.
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Multi-omics BHM

Figure: Regression coefficients with and without classical error modeling in JAGS.
A correlated structure among omic signals is assumed.
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Correlated exposure BHM

Figure: Regression coefficients with and without classical error modeling in JAGS.
Dependencies among omic signals and among different TRAP exposures are
assumed.
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Conclusions and future work

• Effect of classical error

• No effect of Berkson error

• BHM flexibility: possible to account for dependencies

• Among omics: allows to identify more signals, no multiple testing
problems

• Among pollutants

• Classical ME included in both models

• Implemented in JAGS

• Working on INLA implementation: some difficulties with multiple
omics, faster for single omic models
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Thank you!
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