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Clinical prediction models

Clinical rediction models used for decision making

⇒ to identify low and high risk patients for a specific disease /
pathogen / event /...

⇒ to better target treatment and prevention
⇒ to improve medical practice
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Objective Bayesian variable selection for GLMs

Select among p variables→ 2p candidate modelsMj

Posterior model probability:

Pr(Mj | data) �
TBFj ,0Pr(Mj )∑

k∈J TBFk ,0Pr(Mk )

Generalized g-prior 1, 2 leads to

TBFj ,0 �
p(zj | Mj )
p(zj | M0)

� (g + 1)−dj/2 exp
(

g
g + 1

zj

2

)
zj is the deviance statistic of modelMj with dj degrees of freedom

1Hu and Johnson. Bayesian model selection using test statistics. Journal of the Royal Statisical Society, 2009
2Held, Sabanés Bové and Gravestock. Approximate Bayesian model selection with the deviance statistic. Statistical

Science, 2015
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Objective Bayesian variable selection for GLMs

Posterior inclusion probability of xk , with k ∈ {1, . . . , p}:

Pr(xk ∈ M | data) �
∑

j∈J :xk∈Mj

Pr(Mj | data)

Median probability model (MPM) 3:
Include xk if Pr(xk ∈ M | data) ≥ 0.5

⇒ MPM = optimal for prediction under the squared error loss when
selecting among normal linear models

BUT MPM also highly sentitive to prior choices

3Barbieri and Berger. Optimal predictive model selection. Annals of Statistics, 2004
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Prior choices

Model prior ofMj with pj variables
⇒ fixed prior inclusion probability at q � 1/2
→ uniform prior on the model space: Pr(Mj ) � 1/2p

⇒ beta distibution on the prior inclusion probability q ∼ Be(a, b)

→ Pr(Mj | a, b) �
B(a + pj , b + p − pj )

B(a, b)

a � b � 1→ multiplicity-corrected model prior 4

Definition of g
⇒ Local empirical Bayes: ĝ � max{zj/dj − 1, 0}

⇒ hyper-g/n: g/n
g/n+1 ∼ U(0, 1)

⇒ Zellner-Siow adapted

4Scott and Berger. Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. Annals of
Statistics, 2010
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Case study

Application on GUSTO-I data using logistic regression

⇒ Randomized study for comparison of 4 different treatments in
over 40‘000 acute myocardial infarction patients

⇒ We use a publicly available subgroup from the Western region
of the USA (n � 2188)

⇒ prediction of 30-days survival

We focus on 17 covariates
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Sensitivity of the MPM
with respect to the definition of g and the model prior
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Sensitivity of the MPM
with respect to the hyper-parameters a and b
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The quantile probability model

• Define p + 1 candidate models {M0 ,M1 , . . . ,Mp} based on
inclusion probabilities

• Compute predictive model selection criterion:
DIC, WAIC or LOO-IC

• Select the model with lowest information criterion→ QPM
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Predictive model selection information criteria (IC)

The deviance information criterion (DIC):

−2 log f (y | θ̂) + 2pDIC

[adjustement of the log pred. density] + [approximate bias correction]

Similarly, Watanabe-Akaike and leave-one-out cross-validation IC
(WAIC and LOO-IC) can be defined 5

→ computation possible with loo-package in R

→ IC does not depend on model prior !

5Gelman, Hwang and Vehtari. Understanding predictive information criteria for Bayesian models. Statistics and Com-
puting, 2014
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The quantile probability model
QPM modelM9 independent from the definition of g
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Monte Carlo error of DIC

Sampling from the posterior distribution→ Monte Carlo (MC) error

Brute force approach:

Replicate the DIC calculation N times and compute sample
standard deviation of the N DIC estimates

⇒ very time-consuming
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New efficient approach for Monte Carlo error of DIC

Suppose DIC has been computed using MC sample of size S
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New efficient approach for Monte Carlo error of DIC
Suppose DIC has been computed using MC sample of size S

with the square-root law we obtain SE(DIC(k)) ∝
√

1
S/k ∝

√
k

⇒ SE(DIC(k)) � c ·
√

k ⇒ SE(DIC(1)) � c

estimate c with weighted linear regression of SE(DIC(k)) on
√

k with
weights k
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Monte Carlo error of DIC
Application to case study

Case study: S � 50, 000 and k ∈ {80, 100, 125, 160, 200}

The Monte Carlo standard error of ∆DICj � DICj−1 − DICj :

SE(∆DICj ) �
√
SE(DICj−1)2 − SE(DICj )2

LEB hyper-g/n ZS adapted
∆DICj (SE) ∆DICj (SE) ∆DICj (SE)

...
M8 vs. M9 0.217 (0.031) 0.166 (0.034) 0.057 (0.033)
M9 vs. M10 -0.295 (0.031) -0.342 (0.034) -0.170 (0.032)

...

Conclusion: The DIC of the QPMM9 is the unique minimum !
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Conclusion

• Drastically reduced candidate model space: 2p to p + 1

• In the application: QPM not sensitve with respect to prior
choices

• Model prior does not affect the information criterion
• Efficient method introduced to compute Monte Carlo error of IC

• Work revised for Journal of Computational Statistics and Data
Analysis
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Thank you

Questions? Comments?


