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Problems for causal inference and missing data

Always untestable (from the observed data) assumptions
needed for drawing inference in the presence of missing data
and for causal inference

Bias from mis-specified (parametric) models when use
Bayesian inference

we will discuss each next
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How to specify uncheckable assumptions I

assumptions need to be reasonable and carefully chosen for
the specific application

but since uncheckable from observed data: how address
deviations/uncertainty?
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How to specify uncheckable assumptions II

strategy: parametrize assumptions via sensitivity parameters
sensitivity parameters should be easy to ’understand’ in at
least one (of two) ways

1 so can elicit reasonable values based on expert opinion
2 so can calibrate based on ’corresponding features’ of the

observed data

for 2., often can do via identifying restrictions - connect
unidentified distributions, moments, etc. to ’corresponding’
observed data ’equivalents’

informative prior specification for sensitivity parameters

not uncommon to need assumptions for missing data AND
causality in real applications
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Models for observed data

use Bayesian nonparametrics (BNP) to avoid bias from
misspecified parametric assumptions, but not at loss of
efficiency

what BNP models to use?

can be factor of (causal) estimand of interest (specific
estimand (e.g. mean) or not)
computational considerations
but if model entire distribution of potential outcomes
’carefully’, allow any causal estimand

fit of model to observed data should not be impacted by
uncheckable assumptions (and sensitivity parameters)
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Case studies

use two case studies to illustrate approach

Case study I: EDP for comparative effectiveness in EHRs (with
missing confounders)
Case study II: DDP-GP for causal inference for semi-competing
risks
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Case Study I: Notation

A: treatment

L: potential (pre-treatment) confounders

Y : observed outcome

Y a: potential outcome if the subject had been assigned to
treatment level a.
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Causal effects

average causal effect: E [Y 1 − Y 0]

conditional average causal effect: E [(Y 1 − Y 0)|V ], V ⊂ L

quantile causal effect: F−1
1 (p)− F−1

0 (p)
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Uncheckable causal assumptions I

1 Consistency: Y a = Y among subjects with A = a, for all a.

implies that p(Y a|A = a, L) = p(Y |A = a, L).
allows us to estimate parameters in Y a|L model using the
observed data

2 Positivity: p(a|L) > 0

each treatment level has non-zero probability for every
confounder level.

3 Ignorability: {Y a : ∀a ∈ A} ⊥ A|L}.
implies that p(Y a|A = a, L) = p(Y a|A = a′, L).
‘no unmeasured confounders’ assumption.
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Uncheckable causal assumptions II

Three assumptions imply (this is an identifying restriction)

F (ya|L) = F (ya|A = a, L) = F (y |A = a, L)

can introduce sensitivity parameter (to ignorability) here as

F (ya|L) = F (y + ∆ ∗ a|A = a, L)

∆: average difference in Y a (for a = 0, 1) among subjects
assigned A = 1 compared with subjects assigned A = 0, who
have the same covariates L
can assign an informative prior distribution for ∆ (representing
our expectation about unmeasured confounding, as well as our
uncertainty about it)
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Uncheckable causal assumptions III

to calibrate ∆ (using the observed data), we first calculate the
total variance in Y explained by L (but not A); denote this by
R2

then assume that |∆| = |E (Y a|A = 1, L)− E (Y a|A = 0, L)| <√
var(Y )(1− R2)k

unmeasured confounding would account for less than k% of
the remaining variance; specify a prior distribution for k
(sensitivity parameter)
can do similar development with pseudo R2 for non-continuous
outcomes
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Observed data models using BNP I

model the joint distribution p(Y ,A, L)

implicitly allows for ignorable missingness in L (uncheckable
but not focus here)

for simplicity, let Xi = (AT
i , L

T
i )T so we model p(Y ,X ) (or

just condition on A)
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Observed data models using BNP II

Model the joint distribution of (Y ,X ) using an enriched Dirichlet
process (EDP) mixture (Wade et al, 2011, 2014)

Yi |Xi , θi ∼ p(y |x , θi )
Xi ,r |ωi ∼ p(xr |ωi ), indep

(θi , ωi )|P ∼ P

P ∼ EDP(αθ, αω,P0).

(1)

The notation P ∼ EDP(αθ, αω,P0) means that Pθ ∼ DP(αθ,P0,θ)
and Pω|θ ∼ DP(αω,P0,ω|θ) with base measure P0 = P0,θ × P0,ω|θ.
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Observed data models using BNP III

each subject i has their own parameters θi and ωi

However, because P is discrete, some clusters of subjects will
have the same θi and ωi

The number of clusters depends on the concentration
parameters αθ and αω (low values indicate fewer clusters)

typical DP models have a single concentration parameter

The enrichment of the usual DP is to have nested
concentration parameters

allows for more x-clusters than y -clusters, which is important
because the dimension of x will typically be much larger than
that of y .
keeps cluster membership dependent on both y |x and x
through the nesting of the random partition.
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Observed data models using BNP IV

We assume a local generalized linear model for p(y |x , θi ),

p(y |x , θi ) = exp

{
Yiηi − b(ηi )

a(φi )
+ c(yi , φi )

}
where g{b′(ηi )} = Xiβi and g{} is a link function.
If Y is binary

Yi |Xi , θi ∼ Bern{logit−1(Xβi )}

where θi = βi and X is the design matrix involving A and L
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Observed data models using BNP V

assumes covariates X are locally independent.

That is given ωi , covariates are independent. Two subjects in
the same subcluster would have similar values of X .

local independence assumption

makes it easy to include many continuous and discrete
confounders, because the joint distribution is just a product of
marginal distributions.
makes computations considerably faster because covariance
matrices for the joint distribution of confounders are not
needed.

while assume that locally the generalized linear model is
correctly specified for y and x and that the x ’s are
independent from each other, globally all of the variables are
dependent with potentially non-linear relationships.
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Observed data models using BNP VI

The conditional distribution implied by the joint model is
p(y |x) =

∑∞
j=1 wj(x)K (y |x , θj), where

wj(x) =

∑∞
l=1 γl |jK (x |ωl |j)∑∞

h=1 γh
∑∞

l=1 γl |hK (x |ωl |h)
.

Notice that the weights wj(x) depend on x . Therefore, even
though K (y |x , θj) is a generalized linear model, p(y |x) is a
computationally tractable, flexible, non-linear, non-additive
model.
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Posterior computations

Gibbs sampler for obtaining draws from the posterior
distribution of the parameters (extension of Neal (2000)
Algorithm 8 to accomodate nested clustering)

Data augmentation - sample from conditional distribution of
missing covariates at each iteration (valid under ignorable
missingness)

MC integration (over L) for each posterior draw to compute
any functional of the distribution of the potential outcomes
(can be done in parallel) - G computation step

p(ya) =

∫
p(y |a, l)p(L)dL
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HIV Data I

Antiretroviral therapy (ART) is recommended for all human
immunodeficiency virus (HIV) / chronic hepatitis C virus
(HCV)-coinfected patients.

ART regimens often include drugs from the nucleoside reverse
transcriptase inhibitor (NRTI) class.

concern that some drugs in the NRTI class (didanosine,
stavudine, zidovudine, and zalcitabine) might cause depletion
of mitochondrial DNA, leading to liver injury.
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HIV Data II

We apply the proposed BNP approach to compare outcome Y
(death within 2 years) among those prescribed mitochondrial
toxic NRTI (mtNRTI)-containing ART regimen to those
prescribed other NRTI-containing ART regimen.

data from a study of HIV/HCV patients who newly initiated
ART within the Veterans Aging Cohort Study (VACS)

The study population included co-infected patients who newly
initiated an ART-regimen that include NRTIs (either
mtNRTIs or other NRTIs) from 2002 to 2009.

total of n = 1747 patients included in the study
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HIV Data III

A = 1: initiating an ART regimen that included an mtNRTI;
A = 0 initiating an ART regiment that included some other
NRTI.

outcome: all-cause mortality (focused on the event occurring
within 2 years of ART initiation)

There were 76 deaths out of 836 patients in the mtNRTI
group, and 89 deaths out of 911 patients in the other NRTI
group.

causal parameter of interest is the relative risk:

ψrr = E (Y 1)/E (Y 0)
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HIV Data IV

Variables that were included in the model as confounders (L)
included

baseline demographics and clinical variables: age at baseline
(years), race/ethnicity, body mass index, diabetes mellitus,
alcohol dependence/abuse, injection/non-injection drug abuse,
year of ART initiation, and exposure to other antiretrovirals
associated with hepatotoxicity (i.e., abacavir, nevirapine,
saquinavir, tipranavir).
baseline laboratory variables: CD4 count, HIV RNA, alanine
aminotransferase (ALT), aspartate aminotransferase (AST),
and fibrosis-4 (FIB-4) score.
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HIV Data V

The percentage of missing data for each variable is as follows:
ALT 1.3%, AST 2.5%, CD4 1.8%, FIB-4 3.1%.

The percentage of patients with at least one missing variable
is 4.8%.
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Case Study I: Results I

The posterior median and 95% CI of the average causal
relative risk (RR), ψrr , were

1.16(0.87, 1.54)

16% increased risk of death within 2 years comparing
mtNRTI-containing ART regimens with other NRTI-containing
ART regimens.
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Case Study I: Conclusions I

proposed a Bayesian nonparametric approach for causal
inference (for large p) that can handle discrete or continuous
outcomes and categorical treatment.

simulations (now presented here) show overall good
performance of the BNP approach compared with
non-Bayesian and/or parametric approaches
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Case Study I: Conclusions II

While the full distribution of outcome, treatment, and
confounders is modeled, the proposed BNP approach allows

for flexible modeling of these distributions
estimation of any functionals of the potential outcome
distribution
high-dimensional confounding.
’imputation’ of missing covariates under ignorable missingness
uncertainty about uncheckable assumptions can be accounted
for via informative priors on ’easy to calibrate’ sensitivity
parameter
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Case study II: Semi-competing risks

Semi-competing risks occur in studies where observation of a
nonterminal event (e.g., progression) may be pre-empted by a
terminal event (e.g., death), but not vice versa.

In randomized clinical trials to evaluate treatments of
life-threatening diseases, patients are often observed for
specific types of disease progression and survival.

Often, the primary outcome is patient survival, resulting in
data analyses focusing on the terminal event using standard
survival analysis tools

However, there may also be interest in understanding the
effect of treatment on nonterminal outcomes such as
progression or readmission
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Motivating Example

randomized trial for the treatment of malignant brain tumors

one of the important progression endpoints is based on
deterioration of the cerebellum
biologically plausible that a patient could die without cerebellar
deterioration
thus, analyzing the effect of treatment on progression needs to
account for the fact that progression is not well-defined after
death.
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Relevant literature

Varadhan et al. (2014): nice review - classify models into two
broad categories:

models for the distribution of the observable data, e.g.,
cause-specific hazards, sub-distribution functions (Fix and
Neyman, 1951; Hougaard, 1999; Xu et al., 2010; Lee et al.
2015)
models for the distribution of the latent failure times (Robins,
1995; Lin et al., 1996; Wang, 2003; Peng and Fine, 2007;
Chen, 2012; Hsieh and Huang, 2012)

inference has focused on specific model parameters (e.g.,
regression coefficients).

With the exception of Robins (1995ab) none of the approaches
have discussed causal interpretability of the target parameters.
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Approach to problem

Here, interested in estimating the causal effect of treatment
on the non-terminal endpoint from a randomized trial
generating semi-competing risk data.

Using the potential outcomes framework, we propose a
principal stratification estimand (Frangakis and Rubin, 2002)
to quantify the causal effect.

Introduce assumptions that utilize baseline covariates to
identify this estimand from the distribution of the observable
data

M. Daniels University of Florida
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Notation

z = 0, 1 represents control and treatment group (used A in
previous example; here Z since randomized)

Y z
P : progression time under treatment z .

Y z
D : death time under treatment z .

C z : censoring time under treatment z .

Fundamental to our setting is that Y z
P 6> Y z

D (i.e., progression
cannot happen after death).

M. Daniels University of Florida
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Causal estimand

The causal estimand of interest:

τ(u) =
Pr [Y 1

P < u | Y 0
D ≥ u,Y 1

D ≥ u]

Pr [Y 0
P < u | Y 0

D ≥ u,Y 1
D ≥ u]

,

where τ(·) is a smooth function of u.

Among patients who survive to time u under both treatments,
this estimand contrasts the risk of progression prior to time u
for treatment 1 relative to treatment 0.

example of a principal stratum causal effect

M. Daniels University of Florida
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Observed data

Z denote treatment assignment

X denote a vector of the baseline covariates (replaced L, the
confounders from previous case study)

the observed event times and event indicators.

YP = Y Z
P , YD = Y Z

D and C = CZ .
T1 = YP ∧ YD ∧ C ,
δ = I (YP < YD ∧ C ),
T2 = YD ∧ C ,
ξ = I (YD < C )

The observed data for each patient are
O = (T1,T2, δ, ξ,Z ,X ).

M. Daniels University of Florida
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Assumption 1

Assumption 1: Treatment is randomized, i.e.,

Z ⊥ (Y z
P ,Y

z
D ,C

z ,X ); z = 0, 1,

and 0 < Pr [Z = 1] < 1.
This holds by design in randomized trials

M. Daniels University of Florida
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Assumption 2

Assumption 2: Censoring is non-informative in the sense that

C z ⊥ (Y z
P ,Y

z
D) X = x ; z = 0, 1,

and Pr [C z > Y z
P ,C

z > Y z
D |X = x ] > 0 for all x .

M. Daniels University of Florida
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Identification Results 1

Let λzx and G zx denote the conditional hazard function and
conditional distribution function of Y z

D given X = x , respectively.
Under Assumptions 1 and 2, λzx and G zx are identified

λzx (t) = lim
dt→0

{
Pr [t ≤ T2 < t + dt, ξ = 1 T2 ≥ t,X = x ,Z = z ]

dt

}
and

G z
x (t) = 1− exp

{
−
∫ t

0
λzx (t)dt

}
.

M. Daniels University of Florida
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Identification Results 2

The conditional sub-distribution function of Y z
P given Y z

D and
X = x , V zx , is identified

V z
x (s|t) = Pr [T1 ≤ s, δ = 1 T2 = t, ξ = 1,X = x ,Z = z ],

where s ≤ t.

Together G zx (t) and V zx (s|t) identify the joint subdistribution
V zx (s, t) for (Y z

P ,Y
z
D) given X = x .

M. Daniels University of Florida
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Assumption 3

Assumption 3: The conditional joint distribution function of
(Y 0

D ,Y
1
D) given X = x , Gx , follows a Gaussian copula model, i.e.,

Gx (v ,w ; ρ) = Φ2,ρ[Φ−1{G 0
x (v)},Φ−1{G 1

x (w)}],

where Φ is a standard normal c.d.f. and Φ2,ρ is a bivariate normal
c.d.f. with mean 0, marginal variances 1, and correlation ρ.

ρ is a sensitivity parameter

easy to interpret and bounded in [−1, 1]

for fixed ρ, Gx is identified since G 0x and G 1x are identified

similar assumptions have been used in the causal mediation
literature (Daniels et al. 2012)

M. Daniels University of Florida
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Assumption 4

Assumption 4: Progression time under treatment z is
conditionally independent of death time under treatment 1− z
given death time under treatment z and covariates X = x , i.e.,

Y z
P ⊥ Y 1−z

D Y z
D ,X = x ; z = 0, 1.

M. Daniels University of Florida
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Identification Results 3

Lemma: Under Assumptions 1-4, τ(·) is identified from the
distribution of the observed data as follows:

τ(u) =

∫
x
∫
s<u

∫
v≥u

∫
t≥u dV

1x (s|t)dGx (v , t)dK (x)∫
x
∫
s<u

∫
v≥u

∫
t≥u dV

0x (s|t)dGx (v , t)dK (x)
,

where K (x) is the empirical distribution of X .

M. Daniels University of Florida
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BNP model for the observed data distribution

specify independent Dependent Dirichlet Process-Gaussian
Process prior (DDP-GP) for each treatment group z , on the
unknown conditional (on X = x) probability measure (Hzx ) of
(Y z

P ,Y
z
D).

Since V zx (s|t) = Hzx (Y z
P ≤ s,Y z

P ≤ Y z
D |Y z

D = t) (s ≤ t) and
G zx (t) = Hzx (Y z

D ≤ t),

the prior on Hzx induces priors on V zx (s|t) and G zx (t)
(identified under Assumptions 1 and 2)
together with the Gaussian copula for Gx implies a prior on
the estimand τ(·).
the prior on Hzx also induces priors on non-identified quantities
(i.e., progression after death) which have no impact on our
analysis.
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More on DDP-GP I

prior on the conditional (on covariates X = x) distribution,
Hx
use a Dependent Dirichlet process (DDP) mixture of normals,

dHx (v) =
∑
h

whφ (v ;θh(x),Σ) dv .

where wh = νh
∏

l<h(1− νl) with νh ∼ Beta(1, α)

what about {θh(x) : x}?

M. Daniels University of Florida
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More on DDP-GP II

GP prior: {θhj(x) : x} ∼ GP(µhj(·),Rj(·, ·))

model the mean function µhj(·) as a linear regression on
covariates µhj(x l ;βhj) = x lβhj , with covariance process
specified as

Rj(x l , x l′) = exp

{
−

D∑
d=1

(xld − xl′d)2

}
+ δll′ε

2,

where D is the dimension of the covariate vector,
δll′ = I (l = l ′) and ε is a small constant used to ensure that
the covariance function is positive definite.
continuous covariates standardized

final model/prior:
{Hx} ∼ DDPGP(α,Σ,GP(µj(·),Rj(·, ·)), j = 1, . . . , J).

M. Daniels University of Florida
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Brain Cancer Data example I

randomized (placebo-controlled) phase II trial (Brem et al,
1995)

222 recurrent gliomas patients, who were scheduled for tumor
resection

Eligible patients had a single focus of tumor in the cerebrum,
had a Karnofsky score greater than 60, had completed
radiation therapy, had not taken nitrosoureas within 6 weeks
of enrollment, and had not had systematic chemotherapy
within 4 weeks of enrollment.

The data includes 11 baseline prognostic measures and a
baseline evaluation of cerebellar function.

M. Daniels University of Florida
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Brain Cancer Data example II

Patient were randomized to receive surgically implanted
biodegradable polymer discs with or without 3.85% of
carmustine.

The follow-up duration was 1 year.

Of the 219 patients with complete baseline measures

204 were observed to die
100 were observed to progress prior to death
Of the 15 patients who did not die, 4 were observed to have
cerebellar progression.

Goal: estimate the causal effect of treatment on time to
cerebellar progression.

M. Daniels University of Florida
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Causal inference results I

posterior inference for the causal estimand, τ(u).

sensitivity parameter, ρ

fix ρ at 0.2, 0.5, and 0.8.
prior ρ ∼ Beta(0.1875, 0.0625) [mean and variance, 0.75 and
0.15]

M. Daniels University of Florida
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Causal inference results II
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Figure: Posterior estimated τ(u) versus u for different ρ’s. The solid lines
represent the posterior estimated τ(u), and the dashed lines represent
95% (pointwise) credible intervals.
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Causal inference results III

Different values of ρ result in very similar posterior estimated
τ(u)

When the survival time is no more than 55 days (u ≤ 4), the
posterior mean τ̂(u) < 1 and decreases as u increases

suggests that among patients who survive up to 55 days under
both control and treatment, the risk of progression prior to
time u is higher for the control relative to the treatment
however, the 95% credible interval covers 1.
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Causal inference results IV

For those that would survive under both arms beyond 55 days

the relative risk of progression for treatment versus control
approaches and then exceeds one around 1800 days (u = 7.5),
indicating a negative effect of the treatment on progression.
however, again the 95% credible interval covers 1.
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Conclusions

proposed a Bayesian approach for causal inference in setting
of semi-competing risks

BNP for the observed data distribution
an interpretable causal estimand
one of uncheckable assumptions parameterized by a (easy to
interpret) sensitivity parameter
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Ongoing work

Case study I:
EDP approach allows αω to be a function of θ

In our analyses we only included a single αω parameter
explore more complex models

extension to the time-varying confounding setting
extension to settings with many covariates that are not
actually confounders: explore zero-inflated or shrinkage priors
for the coefficients in the BNP model

Case Study II

how to best determine values of the sensitivity parameter, ρ
weaken/remove Assumption 4
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Other missing data and causal settings where use this
approach

Nonignorable missingness (monotone and non-monotone)
using DPMs; Linero and D, 2015; Linero and D, 2017; Linero,
2017
Nonignorable missingness with auxiliary covariates using
DDP-GP; Zhou, D. and Mueller, 2018
Comparative effectiveness in EHRs (using GP, EDP, and
BART & DPM); Roy, et al., D 2016; Roy, D, et al., 2017;
Xu, D. et al., 2017
Causal inference for semi-competing risks using DDP-GP; Xu,
Mueller, Scharfstein, and D. (2018)
Causal inference with time-varying exposure and confounders
with nonignorable missingness using BART; Josefsson and D.
2018
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