Bernard G Francq
Dan Lin
Mikaël Le Bouter
Mélissa Scozzari
Walter Hoyer

Bayesian Coefficients of Variation in Linear Mixed Models,
Random Effects and Precision in Assay Qualification
What we expect from a measure:
Precise + True = Accurate
When I play drums *precisely* and *accurately*...
Introduction to Method Qualification (and Validation)

Aim of qualification

– the analytical method is **suitable** for its intended use
– and consequently to prove the **reliability** of the results obtained

Qualification statistics considered

– **Precision**
– Trueness
– Accuracy

Experimental design

– Multiple replicates per sample
– Multiple days/operators/sessions
– Series dilutions of a spiked-in sample or known concentrations
Precision, Trueness and Accuracy

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Trueness</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meaning</td>
<td>Random error</td>
<td>Systematic Error</td>
<td>Total error</td>
</tr>
<tr>
<td>Related to</td>
<td>Method variability</td>
<td>Method bias</td>
<td>Total deviation from nominal value</td>
</tr>
<tr>
<td>Quantified by</td>
<td>CV or STD</td>
<td>CI</td>
<td>PI or TI</td>
</tr>
<tr>
<td></td>
<td>Confidence Interval</td>
<td>of difference to nominal value</td>
<td>Prediction or Tolerance Interval</td>
</tr>
</tbody>
</table>
Data Set

The study design for the assay validation is composed of:

- 2 different reagents (R1, R2): fixed variable
- 4 operators (B, D, S, W): random variable
- 3 days (D1, D2, D3): random variable
- 2 replicates
- 4 nominal concentrations (25, 50, 75, 100) µl: fixed variable

\[\text{Crossed random effect}\]
Mixed Model Formulation

\[N(\mu, \sigma^2_\beta) + N(0, \sigma^2_\beta) = N(\mu + \alpha_1, \sigma^2_T) \]

\[N(\mu, \sigma^2_\beta) + N(0, \sigma^2_\beta) + N(\mu, \sigma^2_\epsilon) = N(\mu + \alpha_2, \sigma^2_T) \]

\[N(\mu + \alpha_i, \sigma^2_T) = N(\mu + \alpha_i, \sigma^2_T) \approx N(\tilde{\mu} + \tilde{\alpha}_i, \tilde{\sigma}^2_T = \tilde{\sigma}^2_\beta + \tilde{\sigma}^2_\epsilon) \]
Confidence, Prediction, CV in Mixed Model

\[
CV = \frac{\sigma_T}{\mu + \alpha_1}
\]

\[
CV = \frac{\sigma_T}{\mu + \alpha_2}
\]
Confidence intervals are used to assess the trueness
- The degrees of freedom are typically calculated by Kenward-Roger (KR) method
- A plot can be displayed with the CIs calculated at the different level of concentrations

Prediction intervals are used to assess the accuracy
- An **accuracy profile** can be displayed with the PIs calculated at the different level of concentrations
- The uncertainty of the prediction is then the sum of the systematic error (Trueness) + random error (Precision)

Coefficients of Variations (CVs) are used to assess the precision
- The degrees of freedom are calculated by the **Generalized Satterthwaite** method
- **Frequentist** 95% CI are calculated from an adaptation of the modified McKay formula (for univariate distribution)
- **Bayesian** statistics is a straightforward approach to obtain posterior distribution and 95% credible or HPD intervals

Trueness and Accuracy can be expressed in percentage, as well as CV
CV and its 95% CI in univariate distribution

Under the normality assumption,

\[CV = \frac{\sigma}{\bar{X}} \]

Its frequentist 95% CI is given by the modified McKay formula:

\[\frac{CV}{\left(\frac{\chi_{\kappa,r}^2}{r + 1} - 1\right)CV^2 + \frac{\chi_{\kappa,r}^2}{r}} \]

Where \(r = n - 1 \) and \(\kappa = 0.025 \) (or \(\kappa = 0.975 \)) for the lower (upper) bound.

Do you know another formula to calculate the CV?
CV and its 95% CI in univariate distribution

Under log-normal data, the CV is only related to the variance (on the log scale):

$$CV = \sqrt{e^{\sigma^2} - 1}$$

Its frequentist 95% CI is given by the classical 95% CI for σ^2

(Not shown in this presentation)
CV and its 95% CI in mixed models

In mixed models,

- The CV is calculated per variance components
- Total variance = Intermediate Precision
- The mean is replaced by the fixed effects estimate (i.e. intercept)
- Under normality assumption:

\[CV_T = \frac{\sigma_T}{l\beta} \text{ estimated by } \frac{\hat{\sigma}_T}{l\hat{\beta}} \]

- Under log-normal data:
 the CV are directly related to the variance components, and the 95% CI for CV is related to the classical 95% CI for the variance components.
 (Not shown in this presentation)
In mixed models,

\[CV_T = \frac{\sigma_T}{l\beta} \]
and CI for CV = \[\frac{CV}{\left(\frac{\chi^2_{k,r}}{r+1} - 1\right)CV^2 + \frac{\chi^2_{k,r}}{r}} \]

Improvement

We need a generalized formula
for a wide variety of designs in mixed models
(one random factor, nested and crossed designs for multiple random factors, balanced or unbalanced designs)

The 95% CI for (the total) CV is calculated from an adaptation of the McKay formula with degrees of freedom by the Generalized Satterthwaite formula
CV and its 95% CI in mixed models - Bayesian

In Bayesian mixed models, the CV can be obtained from MCMC simulations, with its 95% credible or HPD intervals

PROC MCMC in SAS
1-way random (operator) model

```sas
PROC MCMC DATA = Set3 NBI = 10000 NMC = 10000 STATISTICS = Intervals;
PARMS B0 S2;
PARMS S2op 1;
PRIOR B0  ~ normal(0, var=1e6);
PRIOR S2 ~ igamma(0.01, scale = 0.01); or half-Cauchy distribution
prior S2op ~ igamma(0.01, scale = 0.01); or half-Cauchy distribution
random Gamma ~ normal(0, var = S2op) subject = op;
Mu = B0 + Gamma;
S2tot = S2op + S2;
cvtot = sqrt (S2 + S2op) / B0;
MODEL resp ~ normal(Mu, var = S2);
RUN;
```
Parametrization in mixed model

Our guidelines

Fixed effects
- Cell means model (no intercept)
- Combine all fixed effects into 1 variable

- Reflect the actual design of experiments (no simplification)
- Omitting or combining random effects can underestimate the total variance

Random effects

Reference level = overall (unweighted) mean \rightarrow JMP

Reference level = a given level fixed effect \rightarrow SAS, R,...

Cell means model (no intercept)
Total CV – Coverage probabilities (95%)
1 random variable

- Better coverage probabilities for high residual variability and high number of levels
- Bayesian better for low residual variability
Total CV – Coverage probabilities (95%)
2 crossed random variables

- Similar coverage probabilities Frequentist vs Bayesian
- Credible Intervals better than HPD
Assay Validation – Results Plot
Assay Validation – Results CV - Plot

Credible & HPD Bayesian intervals (weakly priors) are similar to the frequentist intervals.

Intermediate Precision is higher for Reagent 1, but all CVs (+95%CI) are lower than 7%.
Posterior Distribution – CV Intermediate Precision
Conclusions

Frequentist
- CI for CV is challenging
 - McKay formula adaptation
 - Analytical formula (direct)
- Calculate CV is straightforward
- Intervals obtained from posterior
- Weakly informative prior provides similar results to frequentist

Bayesian

Trueness and accuracy profile, but also intermediate precision are very useful in assay qualification and validation

:-) :-) :-) :-) :-) :-) :-) :-)
:-) *Give us your feedback* :-)
:-) :-) :-) :-) :-) :-) :-) :-) :-) :-) :-) :-)
Last but not least

Reference

Acknowledgement
GSK Technical R&D statisticians

Conflict of interest
This work was sponsored by GlaxoSmithKline Biologicals SA. BGF, DL, MLB and WH are employees of the GSK group of companies. MS is a student at UCLouvain University and was performing a traineeship at GSK.