Exploring early interim analyses in basket designs in Oncology
Oliver Sailer, Anna Pöhlmann, Frank Fleischer
24 May 2019, BAYES2019, Lyon, France
Basket designs and Bayesian hierarchical model
Basket designs

• Basket trial*
 – One experimental treatment
 – (Patients with similar genomic features)
 – Different disease types (Renfro and Sargent, 2016)

• Questions
 – Does the treatment work sufficiently?
 – Can we identify cohorts with a promising effect?

* Renfro and Sargent (2016)
Basket designs - analysis approaches

Stratification

- Assumes independent cohorts
- Low precision

Pooling

- Assumes the same underlying response rate in all cohorts
- Potentially large bias

Bayesian hierarchical model (BHM)

- Assumes exchangeability between cohorts
- Parameter of between-cohort variation determines the extent of borrowing
BHM adjusting for target rate (Berry et al., 2013)

- Random cohort effect in terms of log-odds of response rate
- Likelihood

\[r_i | p_j \sim Bin(p_j, n_j) \]

\[\theta_j = \log \left(\frac{p_j}{1 - p_j} \right) - \log \left(\frac{\tilde{p}_j}{1 - \tilde{p}_j} \right) \]

Exchangeability of log-odds after adjusting for target rates

- Prior

\[\theta_j | \mu, \tau \sim N(\mu, \tau^2) \]

\[\mu \sim N(m_\mu, v_\mu) \]

\[\tau \sim HN(s_\tau) \]

Informative prior on between-cohort variability; scale parameter choice see Neuenschwander et al. 2015

- Implementation: R interface to JAGS, R2JAGS package
Recruitment and analysis strategies
Recruitment and analysis strategies

- Interim analyses performed to limit exposure of additional patients to an ineffective drug
- Futility could be based on within-cohort analysis only or borrow information across cohorts
- Possible consequences of futility
 - Stop recruitment into cohort
 - Do not develop drug further for cohort (no-go)
 - Exclude cohort from later analyses (“test-then-pool”, Viele et al. 2013)
Recruitment and analysis strategies

• Strategy 1

Overall go at first cohort go
Overall nogo if all cohorts nogo
Overall consider, else
Recruitment and analysis strategies

- **Strategy 1**

 ![Diagram](image)

 Interim futility analysis
 Decision for cohort i
 use only data of cohort i
 nogo if <r responders

 Recruitment
 I: Interim (here futility)
 F: Final

 Overall go at first cohort go
 Overall nogo if all cohorts nogo
 Overall consider, else
Recruitment and analysis strategies

- **Strategy 1**

 ![Diagram](image)

 Overall go at first cohort go
 Overall nogo if all cohorts nogo
 Overall consider, else

 Final analysis
 Decision for cohort i use all data from all cohorts based on posterior of BHM

 Recruitment
 I: Interim (here futility)
 F: Final

 Time
Recruitment and analysis strategies

- **Strategy 2**

 ![Diagram](image)

 - **Interim futility analysis**
 - Decision for cohort i
 - Use all data from all cohorts based on posterior of BHM

 - **Recruitment**
 - I: Interim (here futility)
 - F: Final

 - **Overall go at first cohort go**
 - Overall nogo if all cohorts nogo
 - Overall consider, else

Exploring early interim analyses in basket designs in Oncology, 24 May 2019
Recruitment and analysis strategies

- Strategy 2

Recruitment
- I: Interim (here futility)
- F: Final

Overall go at first cohort go
Overall nogo if all cohorts nogo
Overall consider, else

Final analysis
Decision for cohort i use all data from all cohorts based on posterior of BHM
Recruitment and analysis strategies

• Strategy 3

Recruitment
I: Interim (here futility)
F: Final

Interim futility analysis
Decision for cohort i
use only data of cohort i
nogo if <r responders

Overall go at first cohort go
Overall nogo if all cohorts nogo
Overall consider, else
Recruitment and analysis strategies

- Strategy 3

Recruitment
I: Interim (here futility)
F: Final

Time

Overall go at first cohort go
Overall nogo if all cohorts nogo
Overall consider, else

Final analysis
Decision for cohort i
use all data from non-futile cohorts
based on posterior of BHM

I
nogo
cons

F
nogo
cons

go
nogo
cons

I
nogo
cons

F
nogo
cons

go
nogo
cons

F
nogo
cons

go
nogo
cons

F
Recruitment and analysis strategies

- **Strategy 4**

 Overall go at first cohort go
 Overall nogo if all cohorts nogo
 Overall consider, else

 Interim / final analysis
 Decision for cohort i
 use all data from all cohorts
 based on posterior of BHM

<table>
<thead>
<tr>
<th>Recruitment</th>
<th>Interim</th>
<th>Interim</th>
<th>Interim</th>
<th>...</th>
<th>Interim</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>I: Interim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F: Final</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recruitment and analysis strategies

• Strategy 4

<table>
<thead>
<tr>
<th>Recruitment I: Interim</th>
<th>I</th>
<th>I</th>
<th>I</th>
<th>I</th>
<th>I</th>
<th>...</th>
<th>I</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interim / final analysis</td>
<td>Decision for cohort i</td>
<td>use all data from all cohorts based on posterior of BHM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall go at first cohort go</td>
<td>Overall nogo if all cohorts nogo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall consider, else</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In case of interim futility, stop recruitment for cohort
Model-based decision rule

Cohort i

NoGo

Consider

Go

$q_{50,i} < c_{1,i}$

else

$q_{50,i} > c_{2,i}$

$q_{50,i}$ median posterior response rate cohort i

$c_{1,i}, c_{2,i}$ cohort specific decision boundary

Variation

$q_{\gamma,i} < c_{1,i}$

else

$q_{1-\gamma,i} > c_{2,i}$

$q_{\gamma,i}$ γ-quantile of posterior distribution
Recruitment and analysis strategies

- **Strategy 1-3:** Futility after 10 patients, final after 20 (per cohort)
- **Strategy 4:** Interim analysis every 5 patients, Final at 4*20 max.
Response scenarios
Response scenarios

- Positive and negative scenarios
- Positive nugget scenario
- Mixed response scenario

<table>
<thead>
<tr>
<th></th>
<th>Sc. 1</th>
<th>Sc. 2</th>
<th>Sc. 3</th>
<th>Sc. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort 1</td>
<td>40%</td>
<td>15%</td>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td>Cohort 2</td>
<td>40%</td>
<td>15%</td>
<td>15%</td>
<td>40%</td>
</tr>
<tr>
<td>Cohort 3</td>
<td>25%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Cohort 4</td>
<td>25%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
</tbody>
</table>
Model parameters
Model parameters

• Model adjustment parameter \tilde{p}_j
• Controls borrowing
• Target rate by cohort set to assumed response rate if drug works (as in Berry et al 2013)

• Inter-cohort variability prior $\tau \sim HN (s_\tau)$
 – $scale = 0.5$ allows for range of τ up to substantial heterogeneity
Operating characteristics
Operating characteristics

- Decision probabilities in scenarios
- Average sample size and duration
Simulation results
Scenario 1

<table>
<thead>
<tr>
<th>Strategy</th>
<th>NoGo</th>
<th>Consider</th>
<th>Go</th>
<th>N</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>15</td>
<td>85</td>
<td>66</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>1/2/9/5</td>
<td>24/25/23/22</td>
<td>75/73/68/73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>15</td>
<td>85</td>
<td>66</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>1/5/5/5</td>
<td>24/22/26/22</td>
<td>75/73/69/73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>14</td>
<td>86</td>
<td>66</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>1/2/9/5</td>
<td>23/24/23/21</td>
<td>76/74/68/74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>15</td>
<td>85</td>
<td></td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>1/5/5/5</td>
<td>24/22/26/22</td>
<td>75/73/69/73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4V</td>
<td>0</td>
<td>14</td>
<td>86</td>
<td></td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>1/2/9/5</td>
<td>23/24/23/21</td>
<td>76/74/68/74</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NoGo, Consider, Go: Probability in %, N average number evaluable, t average duration (months)
Scenario 2

<table>
<thead>
<tr>
<th>Strategy</th>
<th>NoGo</th>
<th>Consider</th>
<th>Go</th>
<th>N</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60 72/76/86/84</td>
<td>39 28/24/14/15</td>
<td>1 0/0/0/1</td>
<td>68</td>
<td>11.5</td>
</tr>
<tr>
<td>2</td>
<td>74 81/84/90/88</td>
<td>25 19/16/10/11</td>
<td>1 0/0/0/1</td>
<td>64</td>
<td>9.0</td>
</tr>
<tr>
<td>3</td>
<td>48 65/69/80/77</td>
<td>50 35/31/20/21</td>
<td>2 0/0/0/2</td>
<td>68</td>
<td>11.5</td>
</tr>
<tr>
<td>4</td>
<td>74 81/84/90/88</td>
<td>25 19/16/10/11</td>
<td>1 0/0/0/1</td>
<td></td>
<td>4.3</td>
</tr>
<tr>
<td>4V</td>
<td>48 65/69/80/77</td>
<td>50 35/31/20/21</td>
<td>2 0/0/0/2</td>
<td></td>
<td>6.0</td>
</tr>
</tbody>
</table>

NoGo, Consider, Go: Probability in %, N average number evaluable, t average duration (months)
Scenario 3

<table>
<thead>
<tr>
<th>Strategy</th>
<th>NoGo</th>
<th>Consider</th>
<th>Go</th>
<th>N</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4/6/53/60/64</td>
<td>71/70/46/36/32</td>
<td>25/24/1/4/4</td>
<td>68</td>
<td>11.2</td>
</tr>
<tr>
<td>2</td>
<td>16/18/57/67/65</td>
<td>60/59/42/29/31</td>
<td>24/23/1/4/4</td>
<td>73</td>
<td>10.4</td>
</tr>
<tr>
<td>3</td>
<td>1/2/44/48/55</td>
<td>60/62/55/47/40</td>
<td>39/36/1/5/5</td>
<td>67</td>
<td>11.0</td>
</tr>
<tr>
<td>4</td>
<td>16/18/57/67/65</td>
<td>60/59/42/29/31</td>
<td>24/23/1/4/4</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>4V</td>
<td>1/2/44/48/55</td>
<td>60/62/55/47/40</td>
<td>39/36/1/5/5</td>
<td></td>
<td>6.4</td>
</tr>
</tbody>
</table>

NoGo, Consider, Go: Probability in %, N average number evaluable, t average duration (months)
Scenario 4

<table>
<thead>
<tr>
<th>Strategy</th>
<th>NoGo</th>
<th>Consider</th>
<th>Go</th>
<th>N</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>36</td>
<td>62</td>
<td>66</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>3/5/43/48</td>
<td>51/46/50/41</td>
<td>46/49/7/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>35</td>
<td>61</td>
<td>72</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>9/1/42/45</td>
<td>47/42/51/44</td>
<td>44/48/7/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>31</td>
<td>69</td>
<td>66</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>1/5/38/45</td>
<td>46/37/52/41</td>
<td>53/58/10/14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>35</td>
<td>61</td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>9/1/42/45</td>
<td>47/42/51/44</td>
<td>44/48/7/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4V</td>
<td>0</td>
<td>31</td>
<td>69</td>
<td></td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>1/5/38/45</td>
<td>46/37/52/41</td>
<td>53/58/10/14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NoGo, Consider, Go: Probability in %, N average number evaluable, t average duration (months)
Questions?

Optional subtitle