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Introduction

M Bayesian parametric models in competition

fm(y|θm) πm(θm) m = 1, . . . ,M

Prior probabilities in the model space P(M = m)

Target: the model’s posterior probabilities

P(M = m|y) ∝ P(M = m)

∫
fm(y|θm)πm(θm)dθm
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Introduction

A key quantity the marginal likelihood (the evidence)∫
fm(y|θm)πm(θm)dθm

Bayesian inference embodies Occam’s razor

A simple model, like Model 0,
makes only a limited range of
predictions; a more powerful
model, like Model 1, is able to
predict a greater variety of data
sets

If the data set falls in region R, the less powerful model will be
the more probable model
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Introduction

The marginal likelihood corresponds to a penalized likelihood

The BIC information criterium comes from an asymptotic
Laplace approximation of the marginal likelihood

Drton and Plummer (2017) Very nice extensions for singular
model selection problems

Bayes factor for models M1 and M0

B10 =

∫
f1(y|θ1)π1(θ1)dθ1∫
f0(y|θ0)π0(θ0)dθ0
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Introduction

Difficulties with the Bayesian model choice paradigm

Prior difficulties

I When we have prior informations, how to choose the prior
distributions on the parameters of each model in a
compatible way?

I When we do not have any prior information, we can not
use easily improper prior distributions

I What about the prior distribution in the models’s space?

We do not address these crucial questions in this talk
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Introduction

Computational difficulties

I How to approximate the marginal likelihoods?

I When the number of models in consideration is huge, how
to explore the models’s space?

We consider the case of a limited number of models and not
address trans-dimensional sampling solutions, like the reversible
jump algorithm
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Introduction

We concentrate on the crucial question: how to approximate the
marginal likelihood or find the model that maximises it

Two cases: the calculating of the likelihood is tractable or not

Goal of this talk: show you that, in each case, these prob-
lems can be re-written as classification problems and that
the associated estimation methods can be very effective
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Introduction

I Tractable likelihood: use of a logistic regression to estimate
the marginal likelihood

I Intractable likelihood: use of Approximate Bayesian Model
choice using random forests
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Tractable likelihood
Standard Monte Carlo approximation

The standard Monte Carlo approximation of

m(y) =
∫
f(y|θ)π(θ)dθ = Eπ [f(y|θ)]

is given by
1
N

N∑
i=1

f(y|θi)

where θ1, . . . ,θN is an N-sample from π(·)

When the prior is far from the posterior, very high variance
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Tractable likelihood
Importance sampling approximation

Let g(·) be a distribution such that g(θ) > 0
when f(y|θ)π(θ) > 0

The importance sampling approximation of

m(y) =
∫
f(y|θ)π(θ)dθ = Eg

[
f(y|θ)

π(θ)

g(θ)

]
is given by

1
N

N∑
i=1

f(y|θi)
π(θi)

g(θi)

where θ1, . . . ,θN is an N-sample from g(·)

Problem specific and curse of dimensionality

Jean-Michel Marin (UM, CNRS & IMAG) Bayesian Biostatistics 2019 22 May 2019 11 / 36



Tractable likelihood
Importance sampling approximation

Let g(·) be a distribution such that g(θ) > 0
when f(y|θ)π(θ) > 0

The importance sampling approximation of

m(y) =
∫
f(y|θ)π(θ)dθ = Eg

[
f(y|θ)

π(θ)

g(θ)

]
is given by

1
N

N∑
i=1

f(y|θi)
π(θi)

g(θi)

where θ1, . . . ,θN is an N-sample from g(·)

Problem specific and curse of dimensionality

Jean-Michel Marin (UM, CNRS & IMAG) Bayesian Biostatistics 2019 22 May 2019 11 / 36



Tractable likelihood
Importance sampling approximation

Let g(·) be a distribution such that g(θ) > 0
when f(y|θ)π(θ) > 0

The importance sampling approximation of

m(y) =
∫
f(y|θ)π(θ)dθ = Eg

[
f(y|θ)

π(θ)

g(θ)

]
is given by

1
N

N∑
i=1

f(y|θi)
π(θi)

g(θi)

where θ1, . . . ,θN is an N-sample from g(·)

Problem specific and curse of dimensionality

Jean-Michel Marin (UM, CNRS & IMAG) Bayesian Biostatistics 2019 22 May 2019 11 / 36



Tractable likelihood
Importance sampling approximation

Let g(·) be a distribution such that g(θ) > 0
when f(y|θ)π(θ) > 0

The importance sampling approximation of

m(y) =
∫
f(y|θ)π(θ)dθ = Eg

[
f(y|θ)

π(θ)

g(θ)

]
is given by

1
N

N∑
i=1

f(y|θi)
π(θi)

g(θi)

where θ1, . . . ,θN is an N-sample from g(·)

Problem specific and curse of dimensionality

Jean-Michel Marin (UM, CNRS & IMAG) Bayesian Biostatistics 2019 22 May 2019 11 / 36



Tractable likelihood
The harmonic mean estimator

Let ϕ(·) be a distribution such that ϕ(θ) = 0
when π(θ)f(y|θ) = 0

Eπ

[
ϕ(θ)

π(θ)f(y|θ)

∣∣∣∣y] = ∫
ϕ(θ)

π(θ)f(y|θ)
π(θ)f(y|θ)
m(y)

dθ =
1

m(y)

The harmonic mean approximation Newton and Raftery (1994) of
m(y) is given by

1

/
N−1

N∑
i=1

ϕ(θi)

π(θi)f(y|θi)

where θ1, . . . ,θN is an N-sample from π(·|y)
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Tractable likelihood
The harmonic mean estimator

As opposed to usual importance sampling constraints, the
density ϕ(θ) must have lighter—rather than fatter—tails than
π(θ)f(y|θ) for the approximation of the marginal likelihood to en-
joy finite variance

Using ϕ(θ) = π(θ) as in the original harmonic mean approxi-
mation will most usually result in an infinite variance estimator

Very high variance

Jean-Michel Marin (UM, CNRS & IMAG) Bayesian Biostatistics 2019 22 May 2019 13 / 36



Tractable likelihood
The harmonic mean estimator

As opposed to usual importance sampling constraints, the
density ϕ(θ) must have lighter—rather than fatter—tails than
π(θ)f(y|θ) for the approximation of the marginal likelihood to en-
joy finite variance

Using ϕ(θ) = π(θ) as in the original harmonic mean approxi-
mation will most usually result in an infinite variance estimator

Very high variance

Jean-Michel Marin (UM, CNRS & IMAG) Bayesian Biostatistics 2019 22 May 2019 13 / 36



Tractable likelihood
The harmonic mean estimator

As opposed to usual importance sampling constraints, the
density ϕ(θ) must have lighter—rather than fatter—tails than
π(θ)f(y|θ) for the approximation of the marginal likelihood to en-
joy finite variance

Using ϕ(θ) = π(θ) as in the original harmonic mean approxi-
mation will most usually result in an infinite variance estimator

Very high variance

Jean-Michel Marin (UM, CNRS & IMAG) Bayesian Biostatistics 2019 22 May 2019 13 / 36



Tractable likelihood
Chib’s solution

m(y) =
f(y|θ)π(θ)
π(θ|y)

,∀θ

For an arbitrary value θ∗ of θ, the Chib’s Chib (1995) approxima-
tion to the marginal likelihood is

m̂(y) =
f(y|θ∗)π(θ∗)
π̂(θ∗|y)

π̂(θ|y) may be the Gaussian approximation based on the MLE
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Tractable likelihood
Chib’s solution

A second solution is to use a nonparametric approximation
based on a preliminary MCMC sample

In the setting of latent variables models, Chib’s approximation
can be attractive as there exists a natural approximation to
πk(θ

∗|y)

π̂(θ∗|y) =
1
T

T∑
t=1

π(θ∗|y, z(t))

where the z(t)’s are the latent variables simulated by the MCMC
sampler

High variance and curse of dimensionality
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Tractable likelihood
Some others alternatives

Large set of approximations for marginal likelihood
or Bayes factors

I Annealed Importance Sampling by Neal [2001]

I Bridge sampling techniques Meng and Wong 1996; Meng
and Schilling 2002
Nice R library bridgesampling (Gronau, Singmann,
Wagenmakers)

I The Savage–Dickey ratio Verdinelli and Wasserman (1995),
Marin and Robert (2010)

I ...

Jean-Michel Marin (UM, CNRS & IMAG) Bayesian Biostatistics 2019 22 May 2019 16 / 36



Tractable likelihood
Some others alternatives

Large set of approximations for marginal likelihood
or Bayes factors

I Annealed Importance Sampling by Neal [2001]

I Bridge sampling techniques Meng and Wong 1996; Meng
and Schilling 2002
Nice R library bridgesampling (Gronau, Singmann,
Wagenmakers)

I The Savage–Dickey ratio Verdinelli and Wasserman (1995),
Marin and Robert (2010)

I ...

Jean-Michel Marin (UM, CNRS & IMAG) Bayesian Biostatistics 2019 22 May 2019 16 / 36



Tractable likelihood
Some others alternatives

Large set of approximations for marginal likelihood
or Bayes factors

I Annealed Importance Sampling by Neal [2001]

I Bridge sampling techniques Meng and Wong 1996; Meng
and Schilling 2002
Nice R library bridgesampling (Gronau, Singmann,
Wagenmakers)

I The Savage–Dickey ratio Verdinelli and Wasserman (1995),
Marin and Robert (2010)

I ...

Jean-Michel Marin (UM, CNRS & IMAG) Bayesian Biostatistics 2019 22 May 2019 16 / 36



Tractable likelihood
Some others alternatives

Large set of approximations for marginal likelihood
or Bayes factors

I Annealed Importance Sampling by Neal [2001]

I Bridge sampling techniques Meng and Wong 1996; Meng
and Schilling 2002
Nice R library bridgesampling (Gronau, Singmann,
Wagenmakers)

I The Savage–Dickey ratio Verdinelli and Wasserman (1995),
Marin and Robert (2010)

I ...

Jean-Michel Marin (UM, CNRS & IMAG) Bayesian Biostatistics 2019 22 May 2019 16 / 36



Tractable likelihood
Some others alternatives

Large set of approximations for marginal likelihood
or Bayes factors

I Annealed Importance Sampling by Neal [2001]

I Bridge sampling techniques Meng and Wong 1996; Meng
and Schilling 2002
Nice R library bridgesampling (Gronau, Singmann,
Wagenmakers)

I The Savage–Dickey ratio Verdinelli and Wasserman (1995),
Marin and Robert (2010)

I ...

Jean-Michel Marin (UM, CNRS & IMAG) Bayesian Biostatistics 2019 22 May 2019 16 / 36



Tractable likelihood
Logistic regression approximation

Idea: reduce an estimation problem to a classification problem
Several versions:

I Logistic regression for density estimation: Hastie et al.
(2003)

I Intensity estimation: Baddeley et al. (2010)

I Logistic regression for estimation in unnormalised models:
Geyer (1994) and Gutmann and Hyvärinen (2012)

The last one is called noise-contrastive estimation by the authors
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Tractable likelihood
Logistic regression approximation

Suppose that
I θ1, . . . ,θN is an N-sample from π(·|y)
I u1, . . . ,uN is an N-sample from π(·)

Let ζ = (θ1, . . . ,θN,u1, . . . ,uN)

We note zi = 1 if the ζi comes from π(·|y) and zi = 0 if ζi = 0
comes from π(·):

f(θ|z = 1) = π(θ|y) =
f(y|θ)π(θ)
m(y)

f(θ|z = 0) = π(θ)
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Tractable likelihood
Logistic regression approximation

The log-odds ratio is

η(θ) = log
[
P(z = 1|θ)
P(z = 0|θ)

]

From an estimate of η(θ), we can deduce an estimate of m(y)

η(θ) = log(f(y|θ)π(θ)) − log(m(y)) − log(π(θ))

η(θ) = c+ log(f(y|θ))

where
c = − log(m(y))
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Tractable likelihood
Logistic regression approximation

c is the intercept of a logistic regression model

c can be estimate using our two simulated datasets and the max-
imum likelihood estimator (not explicit)

ĉ ∈ arg max
c

(
n∑
i=1

[c+ log(f(y|θi))]

−

n∑
i=1

log(1 + exp(c) log(f(y|θi)))

−

n∑
i=1

log(1 + exp(c) log(f(y|ui)))

)
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Tractable likelihood
Logistic regression approximation

A very toy example

y|θ ∼ N (θ, 1)

θ ∼ N (0, 1)

In such a case,

θ|y ∼ N

(
y

2
,
1
2

)
m(y) =

1√
2π
√

2
exp

(
−
y2

4

)
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# y <- rnorm(1,rnorm(1),1)

y <- -0.5

target <- dnorm(y,0,sqrt(2))

thetaprior <- rnorm(1000)

thetapost <- rnorm(1000,y/2,sqrt(1/2))

zeta <- c(thetapost,thetaprior)

z <- c(rep(1,1000),rep(0,1000))

x <- log(dnorm(y,zeta,1))

df <- data.frame(z=z,x=x)

model <- glm(z˜offset(x),data=df,family=binomial)

1/exp(as.numeric(model$coefficients))
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Tractable likelihood
Logistic regression approximation

With Christian Robert, we are testing this strategy, the first re-
sults are impressive (work in progress)

We will work also on promising extension to

I estimate ratio of normalizing contants

I replace the prior by a distribution

I adapt to MCMC samples from the posterior

I adapt to latent variable models
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Intractable likelihood
Context

When the likelihood function f(y|θ) is expensive or impossible
to calculate, it is extremely difficult to sample from the posterior
distribution

π(θ|y) ∝ π(θ)f(y|θ)

Two typical situations:

f(y|θ) =

∫
f(y, u|θ)µ(du), the calculation of this integral is in-

tractable and the latent vector u takes values in a high dimen-
sional space (e.g. population genetics models)

f(y|θ) = g(y,θ)/Z(θ) and the calculation of Z(θ) is intractable
(e.g. for Markov random fields)
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Intractable likelihood
Context

ABC is a technique that only requires being able to sample
from the likelihood f(·|θ)

This technique stemmed from population genetics models,
about 20 years ago, and population geneticists still significantly
contribute to methodological developments of ABC

If, with Christian Robert, we work on ABC methods, we can be
very grateful to our biologist colleagues!

When the likelihood functions fm(y|θm) are intractable, it is very
challenging to estimate the marginal likelihoods∫

fm(y|θm)πm(θm)dθm
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Intractable likelihood
Classic ABC model choice procedure

ABC likelihood-free methods for model choice in Gibbs random
fields Grelaud, Robert, Marin, Rodolphe and Taly (2009) Bayesian
Analysis

1) For i = 1, . . . ,N

a) Generate mi from the prior P(M = m)
b) Generate θ ′mi

from the prior πmi
(·)

c) Generate z from the model fmi
(·|θ ′mi

)
d) Calculate di = d(η(z),η(y))

2) Order the distances d(1), . . . ,d(N)

3) Select the model using the majority rule among the k-smallest
distances index set

A standard K-Nearest Neighbor classifier
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Intractable likelihood
Classic ABC model choice procedure

If η(y) is a sufficient statistics for the model choice problem, this
can work pretty well

If not...

Lack of confidence in approximate Bayesian computation model choice
Robert, Cornuet, Marin, Pillai (2011) PNAS

Relevant statistics for Bayesian model choice
Marin, Pillai, Robert, Rousseau (2014) JRSS B
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Intractable likelihood
Classic ABC model choice procedure

I intuitive
I simple to implement
I embarrassingly parallelisable
I BUT curse of dimensionality: most of the simulations are at

the boundary of the space as the number of summary
statistics increases
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Intractable likelihood
Frontline news from population geneticists country

DIYABC (2014) paper has now around 500 citations

I simulate from the model can be very computationally intensive,
parallelizable algorithms are necessary

I sequential methods are difficult to calibrate and do not give
reproducible results

I available techniques to select the summary statistics do not give
reproducible results
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Intractable likelihood
Frontline news from population geneticists country

Two major difficulties

I to ensure reliability of the method, the number of
simulations should be large

I choice of the summary statistics is still a problem
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Intractable likelihood
Use modern machine learning tools

Exploiting a large number of summary statistics is not an issue
for some machine learning methods

Idea: learn on a huge reference table using random forests

Some theoretical guarantees for sparse problems

Analysis of a random forest model
Biau (2012) JMLR

Consistency of random forests
Scornet, Biau, Vert (2015) The Annals of Statistics

This work stands at the interface between Bayesian inference
and machine learning techniques
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Intractable likelihood
ABC random forests

Reliable ABC model choice via random forests Pudlo, Marin, Estoup,
Cornuet, Gauthier and Robert (2016) Bioinformatics

Input ABC reference table involving model index and summ. statistics
m(1) η1(z(1)) η2(z(1)) . . . ηd(z(1))

m(2) η1(z(2)) η2(z(2)) . . . ηd(z(2))
...

...
...

...
...

m(N) η1(z(N)) η2(z(N)) . . . ηd(z(N))



possibly large collection of summary statistics: from scientific
theory input to machine-learning alternatives

Output a random forest classifier to infer model indexes ̂m(η(y))

abcrf R library
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Intractable likelihood
ABC random forests

Random forest predicts a MAP model index, from the observed
dataset: the predictor provided by the forest is good enough to
select the most likely model but not to derive directly the associ-
ated posterior probability

frequency of trees associated with majority model is no
proper substitute to the true posterior probability
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Intractable likelihood
ABC random forests

Estimate of the posterior probability of the selected model

P[M = ̂m(η(y))|η(y)]

random comes from M (bayesian)!

P[M = ̂m(η(y))|η(y)] = 1 − E
[
I(M , ̂m(η(y)))|η(y)

]
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Intractable likelihood
ABC random forests

A second random forest in regression

1) compute the value of I(M , ̂m(η(z)) for the trained
random forest and for all terms in the ABC reference table
using the out-of-bag classifiers;

2) train a RF regression and get
ρ(η(z)) = Ê

[
I(M , ̂m(η(z)))|η(z)]

]
;

3) return P̂[M = ̂m(η(y))|η(y)] = 1 − ρ(η(y)).
on same reference table out-of-bag magic trick avoid over-
fitting!
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