A Bayesian multivariate factor analysis model for
evaluating an intervention using observational
time-series data on multiple outcomes

Pantelis Samartsidis
MRC Biostatistics Unit, University of Cambridge

BayesPharma 2019
Lyon, 21-24 May

3l UNIVERSITY OF




Motivating example

» Application: impact of stricter alcohol licensing policies on alcohol

related crimes
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Motivating example: details

» Intervention: adaptation of cumulative impact policies

» Objective: estimate the causal effect

Outcomes (per 10,000)
1. Antisocial behaviour incidence
2. Hospital admissions
3. Sexual crimes
4. Violent crimes

Units: 91 local councils in England & Wales (4 treated)

v

v

v

Study period: mid-2009 to 2015 (quarterly data)
See de Vocht et al. (2017)

v



Notation

Notation:
(i) m units (index i): ny controls and ny treated
(ii) T times (index t): Ty pre- and T post-intervention
(iii) K outcomes (index k)
(iv)

Data y;; and covariates x;;

Rubin causal model:

» Treatment-free outcomes y(o)

itk
» Outcomes under intervention yl(;) (¢ >mny and t > T7)
» Counterfactual estimates g)l(fk) (¢ >mnyand t > T7)

» Causal effect estimates éitk = yz(glz — gjl(gz



Challenges for causal inference

Main challenges:

» Observational data
(i) Adjust for effect of covariates

(ii) Potential of unobserved confounding

P> Few treated units: propensity score methodologies not suitable

Our contribution:
» Explicit temporal modelling (efficiency)
» Using multivariate outcomes (efficiency)

» Quantification of uncertainty



Factor analysis

The factor analysis (FA, see e.g. Xu (2017)) model assumes
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Factor analysis
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Factor analysis

The factor analysis (FA, see e.g. Xu (2017)) model assumes
vy = @b B+ N fi+eu

> Coefficients 8 ~ Ny (0,10°1)
» Loadings A\; ~ N, (0, I) for all units ¢ (latent)
» Factors f, ~ N, (0,I) for all times ¢ (latent)

> Errors g; ~ N (0,%?), where ¢ ~ 1G (0.01,0.01)

Some comments:

» Loadings/factors can account for unobserved confounding

» Implied assumption: intervention as good as randomized conditional
on x;; and \;

» Relates to difference-in-differences and synthetic controls



Inducing temporal dependence

> Motivation: autocorrelations likely in time-series data

» For each j =1,...,p, we assume factors are AR(1) i.e.
fij = pife—1 + 1,
where p; € (—1,1) and n;; ~ N (0, 1)
» Let A be the n x p matrix with rows A; and let y, = (y1¢, . - - ,ymg)T
» Marginally, we have that

Cov (y.t, 'ys) = ACov (-ft’ .fs) AT

» Standard FA treats different time points as independent



Choosing p

» Motivation: credible intervals should reflect uncertainty in p
» Let \; be of dimension oo for each ¢

» The multiplicative Gamma shrinkage process prior assumes

1
>\i' ~N O) )
! ( ¢iﬂj>

T .
where 7; = [];_, §;

» Priors: ¢;; ~ Gamma (%, %) 91 ~ Gamma (2.1,1) and
d; ~ Gamma (3.1,1) (j > 1)

» Elements of \; will progressively shrink to zero

» See Bhattacharya and Dunson (2011)



Multivariate factor analysis

> Motivation: the K outcomes potentially share some variability

» The multivariate FA (MVFA) assumes that

0
yz(tiz = wgﬂk + )\intk + 'YZ‘TkStk + €tk

» Think of «,;, as unobserved variables that affect k-th outcome only

» MVFA learns A; using data on all K outcomes

v

MVFA can make use of covariates that are affected by treatment

» Similar approach by De Vito et al. (2018) in meta-analysis



Simulation study

v

Goal: to assess gains (if any) of using MVFA instead of FA

v

Setting:
1. K = 3 outcomes
p1 = 4 shared and ps; = 2 outcome-specific loadings
ny € {30,15,5} and Ty € {40,20, 10}
no=>5and ty =5
pir = 0.9 for all j and &k

> logit {P (i is treated)} = aZ;‘F:TIH (A For + 8]

» Models compared: MVFA+AR, MVFA, FA+AR and FA
>
>

SARE IR BN

Data generated from MVFA-+AR (all models are correctly specified)

Interested in power to detect an intervention effect



Simulation results: joint outcome modelling (k = 1)

Detection rate
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» Gains in power when T3 is small

> T large: A; can be accurately estimated
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Simulation results: AR (k =1)

Detection rate
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» Gains in power when nq is small

> n; large: f, can be accurately estimated
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Simulation results: AR (k = 2)
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» Gains in power when nq is small

> n; large: f, can be accurately estimated
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Real data results: evidence for common factors

» Posterior of > 7" | |vik;|, L1-norm of the j-th column of loadings

matrix .
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° 1
o 1
8 _ 8 |
§ |
0 * )
ERT :
[e] : |
c o | : |
- N H |
- [l
[%2]) 0 | T !
g = : !
8o i L
3 < i 'E
E K
0 - i i S
*EE : =
+ E
o ‘ + = i-i--L-I..n.-o--o--o--o--.--.--.--.---: T Y PR
T T T T T T T
1 5 10 15 20 25 30

Factor index
* Left: outcome-specific loadings. Right: shared loadings



Real data results:

Southwark

Southwark - Hospital admissions

Southwark — Sexual crimes
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Discussion

Conclusions:
» Proposed extensions can improve quality of causal estimates

1. AR: large T1 and small nq
2. Joint outcome modelling: small T}

» MVFA also reduced bias/false positive rates of the FA model

» Empirical application: we did not detect a significant intervention
effect

Future work:
» Shared factors (rather than loadings)
» Model temporal/between-outcome correlation of the error terms
» Spatial MVFA models
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