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Probability of Success

Comprehensive assessment of probability to meet “target” of Phase 3 trial. Based on:

1 Quantitative assessment: Bayesian predictive power,

2 Qualitative adjustement: non-quantifiable additional information e.g. on

competitors, uncertainty around assumptions, change in endpoint from Phase 2

to Phase 3, safety, ...

“Target”: be significant or beat “target product profile” (TPP).

Used for:

Calculating project valuations,

supporting funding, trade-off, and gating decisions by senior management,

developing budgets and hiring plans,

planning manufacturing capacity,

allocate resources in plansource for not-yet approved molecules.
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How can we quantify
probability of success?
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Bayesian Predictive Power

Continuous endpoint, true effect ∆, estimator assumed to follow Normal distribution.

Estimate ∆̂final at final analysis of pivotal trial, based on nfinal observations:

∆̂final ∼ N(∆, σ2
final = σ2/nfinal).

Pivotal trial is called a success if ∆̂final ≤ ∆suc (think of log hazard ratio).

∆suc: can be

Minimal detectable difference (MDD), i.e. effect size such that trial is “just

significant”.

Any other quantity of interest, e.g. alternative that gives 80% power ⇒ target

product profile (TPP).
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Bayesian Predictive Power

Quantity of interest = power function:

P(∆̂final ≤ ∆suc) = Φ
(∆suc −∆

σfinal

)
.

Depends on true effect ∆ ⇒ assume distribution over ∆ with density q and average:

PoS = IE∆

(
P∆(∆̂final ≤ ∆suc)

)
=

∫ ∞
−∞

Φ
(∆suc −∆

σfinal

)
q(∆)d∆.

Bayesian predictive power initially introduced in Spiegelhalter et al. (1986).
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Bayesian Predictive Power

Terminology:

Assurance O’Hagan et al. (2005),

average power,

hybrid classical-Bayesian,

probability of Success (PoS),

...

We use PoS.
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Quantities

1 Power P∆(∆̂final ≤ ∆suc). At trial start, function of assumed effect ∆.

2 Conditional power: P∆(∆̂final ≤ ∆suc|∆̂interim = ∆interim). “Updated” power after

trial has started, function of ∆ and ∆interim.

3 Bayesian predictive power (BPP): average over (conditional) power with respect

to distribution over ∆.

4 Predictive probability: IE(posterior of clinically meaningful effect | every possible

future outcome). See e.g. Berry et al. (2011).

Different quantities that

depend on different assumptions,

have different properties,

have different interpretations.
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Time-to-event endpoint

Approximate distribution of estimated log(hazard ratio) θ̂ := log λ̂:

θ̂ ≈ N(θ, 4/d).

θ = log λ: true underlying effect, true log-hazard ratio.

1:1 randomized trial: Var(θ̂) = 4/d .

d : total number of events in both arms.

In context of pivotal trial:

Random variable θ̂final ∼ N(θ, σ2
final = 4/dfinal).

dfinal: number of events at final analysis.

αfinal: significance level at final analysis. May be adjusted for group-sequential

design.
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Example

Assumptions:

Phase 2 result: θ̂Phase 2 = log(0.700), based on dprior = 50 events.

Consider prior fixed, do not account for uncertainty in estimation of parameters.

Phase 3: 80% power to detect hazard ratio 0.74.

Final analysis after dfinal = 352 events.

αfinal = 0.046 (efficacy interim after 67% of information).

Minimal detectable difference at final analysis: θsuc = log(0.809).

PoS at start of Phase 3, assuming we know Phase 2 result:

PoS =

∫ ∞
−∞

Pθ(θ̂final ≤ θsuc)φµ=log(0.700),σ2=4/50(θ)dθ = 0.683.
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How can we update PoS after
not stopping at an interim analysis?

Kaspar Rufibach Bayesian Predictive Power in drug development 16 / 108



What if the sponsor remains blinded to θ̂interim?

Assume:

Binding interim analysis for futility and efficacy: continue trial only if estimated

log hazard ratio θ̂interim ∈ Iinterim := [θefficacy, θfutility].

Interim assessment typically done by independent data monitoring committee

(iDMC). Sponsor remains blinded: only informed whether trial is stopped or

continued.

Trial not stopped at this interim ⇒ sponsor knows θ̂interim ∈ Iinterim.

θefficacy = −∞ or θfutility = ∞ easily possible.

Knowledge internal to the trial.

How can we update PoS after such an interim?
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Update PoS after blinded interim

PoS formula...

PoS =

∫ ∞
−∞

Pθ(θ̂final ≤ θsuc)qprior(θ)dθ

...becomes:

PoS =

∫ ∞
−∞

Pθ(θ̂final ≤ θsuc|θ̂interim ∈ Iinterim)qposterior(θ)dθ.

Kaspar Rufibach Bayesian Predictive Power in drug development 18 / 108



Update PoS after blinded interim

PoS formula...

PoS =

∫ ∞
−∞

Pθ(θ̂final ≤ θsuc)qprior(θ)dθ

...becomes:

PoS =

∫ ∞
−∞

Pθ(θ̂final ≤ θsuc|θ̂interim ∈ Iinterim)qposterior(θ)dθ.

Kaspar Rufibach Bayesian Predictive Power in drug development 18 / 108



Computation of Pθ(θ̂final ≤ θsuc|θ̂interim ∈ Iinterim)

Computation: θ̂interim and θ̂final are correlated!

Apply canonical joint distribution for group-sequential tests:( θ̂interim

θ̂final

)
∼ N

(( θ

θ

)
,
( 4/dinterim 4/dfinal

4/dfinal 4/dfinal

))
.

Conditional probability:

Pθ(θ̂final ≤ θsuc|θ̂interim ∈ Iinterim) =

=
Pθ(θ̂final ≤ θsuc, θ̂interim ∈ Iinterim)

Pθ(θ̂interim ∈ Iinterim)

=

Pθ

(( θefficacy

−∞

)
≤
( θ̂interim

θ̂final

)
≤
( θfutility

θsuc

))
Φ
(

(θfutility − θ)/
√

4/dinterim

)
− Φ

(
(θefficacy − θ)/

√
4/dinterim

) .
mvtnorm in R.
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Computation of qposterior

In principle, qprior quantifies update in external knowledge.

Sensible to adjust for knowledge “θ̂interim ∈ Iinterim”.

From Bayes’ theorem:

qposterior(θ|θ̂interim ∈ Iinterim) ∝ P(θ̂interim ∈ Iinterim|θ)qprior(θ)

=
(

Φ
( θfutility − θ√

4/dinterim

)
− Φ

( θefficacy − θ√
4/dinterim

))
qprior(θ).
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Interim analysis

PoS at start of Phase 3, assuming we know Phase 2 result:

PoS =

∫ ∞
−∞

Pθ(θ̂final ≤ θsuc)φµ=log(−0.357),σ2=4/50(θ)dθ = 0.683.

Interim after 67% of information = 236 events.

Efficacy interim:

Significance level αinterim = 0.012.

Minimal detectable difference: θinterim
suc = 0.722.

Futility interim: continue if HR ≤ 1.
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How does PoS change if we
do not stop at a futility interim?
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Futility interim analysis only

Futility interim passed with boundary HR ≤ 1: we know that

0 < HR ≤ 1 or

θ̂interim ∈ (−∞, log(1)].

How does PoS change after this interim?

PoS increases from 0.683 to 0.782.
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Why?
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Futility interim analysis only - plot both factors in PoS formula
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hazard ratio:

prior
efficacy boundary
success
futility boundary

Green density not a Normal density, but product of difference of values of Normal

CDF and prior density qprior.
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Futility interim analysis only - sensitivity analysis

PoS at trial start: 0.683.

In our example, with θefficacy = log(0) and θfutility = log(1):

θ̂interim value of θ̂interim PoS after not stopping

∈ (θefficacy, θfutility] (−∞, log(1)] 0.782

log(0.5) 1.000

= θfutility log(1) 0.004
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Futility interim analysis only - comments

After not stopping at interim, PoS increases from 0.683 to 0.782.

Why does PoS increase after not stopping?

Prior with prior mean log(0.7) assigns weight to hazard ratios smaller than

hazard ratio to finally beat, θsuc = log(0.809).

Not stopping shifts mass of prior qprior to the left of 1 for qposterior ⇒ more

weight on hazard ratios ≤ θsuc.

Together with small increase in conditional power accounts for higher PoS after

not stopping.

Kaspar Rufibach Bayesian Predictive Power in drug development 27 / 108



Does PoS decrease or increase after not stopping?

Depends on configuration of

Prior mean θ0 = log(0.700),

efficacy interim boundary θefficacy = log(0.722),

minimal detectable difference at final analysis θsuc = log(0.809),

futility interim boundary θfutility = log(1.000).
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Update after blinded interm

Rule-of-thumb: initial PoS 40%, pass futility interim after 1/3 of events: PoS ≈
60%, do not stop at efficacy interim after 2/3 of events: PoS ≈ 30%.
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What about
choice of prior?
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And what about the
bathtub effect?
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Choice of prior

So far Normal prior.

Flat prior often associated with non-informativeness.

Not necessarily the case for PoS!

See Rufibach et al. (2016a) for details.

What is the problem?
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Recall definitions and example

Power function:

T (θ) := Pθ(θ̂final ≤ θsuc) = Φ
( θsuc − θ

σfinal

)
.

PoS is expected power:

PoS = IEθ T (θ) =

∫ ∞
−∞

Pθ(θ̂final ≤ θsuc)qprior(θ)dθ.

Compute PoS via simulation (law of large numbers):

Draw a sample (θ̂1, . . . , θ̂M ) from prior.

Compute T (θ̂1), . . . ,T (θ̂M ).

PoS = average over these values.
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Simulate PoS in example

Histogram of values of T(θ) for θ sampled from Normal prior

Value of power T(θ)

de
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ity
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0

2

4

6

8

sample size: 1'000'000

1 Is mean really appropriate number to summarize this histogram?

2 Can we compute this density?
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Density of power T (Θ)

Assume prior r.v. Θ with PDF q, CDF Q, and define Y := T (Θ) with PDF g , CDF G .

Use transformation theorem and rule about derivative of an inverse to get:

G(y) = 1− Q(θsuc − σfinalz),

g(y) = q(θsuc − σfinalz)
σfinal

φ(z)

with z := Φ−1(y) and φ the standard Normal density function.

For Normal prior Θ ∼ N(θ0, σ
2
0):

G(y) = 1− Φ(β − αz),

g(y) = αφ(β − αz)
[
φ(z)

]−1
,

with

α = σfinal/σ0 > 0,

β = (θsuc − θ0)/σ0.
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Simulate PoS in example

Histogram of values of T(θ) for θ sampled from Normal prior
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Density g as a function of α, for β = 0

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

densities g(y) for varying α

y

de
ns

ity

alpha = 0.1, beta = 0
alpha = 0.5, beta = 0
alpha = 1, beta = 0
alpha = 1.5, beta = 0
alpha = 2, beta = 0

When summarizing g with PoS ⇒ unimodal density most sensible?

α = 1: transition between “bathtub-shaped” (even convex?) and unimodal

(obviously not concave).

Make qualitative features precise.
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Density g as a function of β, for α = 1
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β determines skewness of g .

Make qualitative features precise.
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Qualitative features of g

Theorem (Qualitative features of g)

We have the following statements:

1 If α = 1, then g is 
strictly decreasing for β < 0,

constant for β = 0,

strictly increasing for β > 0.

on [0, 1]. Minima and maxima of g are accordingly either at 0 or 1.

2 If α 6= 1 then g has a minimum at ym if α < 1,

has a maximum at ym if α > 1,

for ym = Φ(αβ/(α2 − 1)). Furthermore, gis decreasing for y < ym and increasing for y > ym if α < 1,

is increasing for y < ym and decreasing for y > ym if α > 1.

Proof: Compute g ′, g ′′, discuss these.
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Why? And what does it mean?

Simplest case: α = β = 0 ⇒ dprior = dfinal, θ0 = θsuc ⇒ g uniform.

Prior and distribution of pivotal effect size have same variance ⇒ power becomes

uniform, either you beat θsuc with θ̂final or not, with equal probability.

Why P(extreme PoS values) so high if α < 1? d0 < dfinal ⇒ high variance of prior ⇒
high probability to have extreme HRs ⇒ power for these is either almost 0 or 1.

g unimodal if α > 1 ⇒ σfinal > σ0 ⇒ dfinal < d0 ⇒ prior number of events larger than

Phase 3 events.

Unrealistic in clinical development.
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Priors explored

How should we choose prior to get unimodal PoS distribution?

Explored priors:

truncated Normal,

Uniform,

Uniform prior with Normal tails.

None of them provides a unimodal density of power values under realistic assumptions.

Prior potentially informs BPP substantially.

Rufibach et al. (2016a).
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PoS is always smaller
than power?!

So what?
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Question from decision-makers: “PoS is smaller than power?”

Recall example, assuming Phase 2 effect is θ0 = log(0.730):

Power = Φ
(
θsuc−θ0
σfinal

)
= 0.866 ⇒ PoS with prior = point mass at prior mean.

PoS = Φ
(

θsuc−θ0√
σ2

final
+σ2

0

)
= 0.647.

⇒ PoS always smaller than power if power ≥ 0.5.
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Power and PoS as a function of θ0 for a Normal prior

Power
PoSθsuc

Rufibach et al. (2016a): Extends statement to any symmetric and unimodal prior.
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PoS is smaller than power

Dallow and Fina (2011)
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Choice of prior for Bayesian Predictive Power
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Can we make that work in
pharma drug development?
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Lymphoma

B-cell malignancies:

Indolent non-Hodgkin lymphoma (iNHL),

diffuse large B-cell lymphoma (DLBCL, aggressive NHL),

chronic lymphocytic lymphoma (CLL).

Standard therapies prior to our new drug Gazyva: rituximab + chemo.

Accepted primary endpoint: progression-free survival.

Widely believed that response (complete, CR, overall = complete + partial

response, ORR) at end of chemo provides indication of efficacy.
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Obinutuzumab, Gazyva, GA101

Obinutuzumab, Gazyva, GA101:

2nd generation anti-CD20 antibody.

Demonstrated single agent activity in iNHL, DLBCL, CLL.

Targeted to be best-in-class: Superior efficacy, supposed to broadly replace

rituximab.

Fast to market - rituximab patent expiration looming. Some risk appetite.
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Trials

GAUSS: Randomized Phase 2 trial in R/R iNHL,

GA101 mono vs. rituximab mono,

149 patients,

primary endpoint ORR, PFS also collected.

Four randomized Phase 3 trials:

Trial Line Indication #patients G vs. R 1st patient randomized

CLL11 1st CLL 356 April 2010

Gadolin 2nd indolent NHL 413 April 2010

Gallium 1st indolent NHL 1202 July 2011

Goya 1st aggressive NHL 1418 July 2011

Primary endpoint for all Phase 3 trials: PFS.

Futility (≈30% of information) and efficacy interim analysis (≈67%) planned for all.

Interim analyses by trial-specific independent DMCs.
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149 patients,

primary endpoint ORR, PFS also collected.

Four randomized Phase 3 trials:

Trial Line Indication #patients G vs. R 1st patient randomized

CLL11 1st CLL 356 April 2010

Gadolin 2nd indolent NHL 413 April 2010

Gallium 1st indolent NHL 1202 July 2011

Goya 1st aggressive NHL 1418 July 2011

Primary endpoint for all Phase 3 trials: PFS.

Futility (≈30% of information) and efficacy interim analysis (≈67%) planned for all.

Interim analyses by trial-specific independent DMCs.
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PoS for Goya and Gallium over time

Event Goya Gallium

First discussion of trials 0.65 0.65
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Update 1, Q1/2011: GAUSS primary analysis
Goya and Gallium had not started yet.

GAUSS primary analysis:

Investigator response: ∆ORR 4.6%.

Independently-assessed response: ∆ORR 15.2%.

PFS hazard ratio 1.07.
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Update 1, Q1/2011: GAUSS primary analysis

Actions:

Based on GAUSS: decrease PoS qualitatively to 0.41 for both trials.

Add early futility interim analyses to both trials:

Endpoints ∆CR and ∆ORR, not PFS.

Bars to jump: Goya ∆ = 0.05, Gallium ∆ = 0.03 for CR proportion in favour of Gazyva.

After 200 (Goya) and 170 patients (Gallium) evaluable for response.
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PoS for Goya and Gallium over time

Event Goya Gallium

First discussion of trials 0.65 0.65

Update 1, Q1/2011 0.41 0.41
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Update 2, Q1/2013: various results

In Q1/2013, four sources of external knowledge:

CLL11, two final analyses (G vs. standard chemo, R vs. standard chemo).

XCLL11 ∼ N(log 0.44, 4/64.2).

GAUSS, PFS update. XGAUSS ∼ N(log 0.96, 4/76).

GALLIUM, futility interim on CR passed.

GOYA, futility interim on CR passed.

All randomized Gazyva trials, but

different primary endpoints,

different phase,

different indications.

GAUSS already used with earlier snapshot.
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GALLIUM

Futility analysis: continue trial if complete response proportion difference among first

170 randomized patients ≥ 3%.

iDMC recommended to continue.

How to include information in PoS computation?

Parametric model associating ∆ in CR proportion to PFS based on

meta-regression model ⇒ function ĤR(∆).

Use ĤR(∆ = 3%) as point estimate for hazard ratio.

Variance: based on 12 PFS events among 170 futility analysis patients.

p.s.: iDMC was looking at “totality of information”.
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GALLIUM: NHL 1st line and rel/ref studies
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Quantify knowledge from GALLIUM via

XGALLIUM ∼ N(log 0.806, 4/12).
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Distributions of log(HR)’s
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We need one data density φdata. Various possibilites to synthesize. See backup.
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Update 2, Q1/2013: Actions

Action senior management based on these results: Do not modify PoSs.

Synthesized information on effect of GA101 vs. rituximab much depending on

chosen weights to combine four results.

Uncertainty not accounted for: response models, “totality of information” in

futilities.

GAUSS already used to downgrade PoS.

Nothing had been pre-specified.

Action Biostatistics: “Back-engineer” Normal prior:

Assume initial PoS of 0.41 is worth #PFS events observed in futility interim ⇒
determines variance.

Compute prior mean for each trial from closed formula.

Yields 0.870 for Gallium, 0.886 for Goya.

Why different? #events at final analysis is different.
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PoS for Goya and Gallium over time

Event Goya Gallium

First discussion of trials 0.65 0.65

Update 1, Q1/2011 0.41 0.41

Update 2, Q1/2013 0.41 0.41
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Update 3: futility interims on PFS

Goya Gallium

Number of events 134 111

Futility boundary for hazard ratio 1 1

Date of iDMC decision 21 Mar 2014 28 Jul 2014

iDMC recommendation Continue Continue

Action: update PoS with knowledge that hazard ratio ≤ 1.

Methodology described in Rufibach et al. (2016c).
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Futility interim - update factors in PoS formula (Gallium)
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PoS for Goya and Gallium over time

Event Goya Gallium

First discussion of trials 0.65 0.65

Update 1, Q1/2011 0.41 0.41

Update 2, Q1/2013 0.41 0.41

Update 3, Q1 & 3 2014 (PoS@efficacy interim) 0.49 0.62

Update 3, Q1 & 3 2014 (PoS@final, assume no PFS efficacy) 0.65 0.74

Update 3, Q1 & 3 2014 (PoS@final, assume we pass PFS efficacy) 0.31 0.32

Why PoS lower for Goya?

More events to define prior ⇒ prior hazard ratio higher for Goya.

Prior density more narrow around this higher prior mean.
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Update 4: efficacy interims on PFS

Goya Gallium

Number of events 134 248

Efficay boundary for hazard ratio 0.743 0.728

Date of iDMC decision 6 Mar 2015 20 May 2016

iDMC recommendation Continue stop and file

Observed hazard ratio 0.66

Action for Goya: update PoS with knowledge that hazard ratio ≥ 0.743.

Primary publication Gallium: Marcus et al. (2017).
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Efficacy interim - update weighting density (Goya)
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PoS for Goya and Gallium over time

Event Goya Gallium

First discussion of trials 0.65 0.65

Update 1, Q1/2011 0.41 0.41

Update 2, Q1/2013 0.41 0.41

Update 3, Q1 & 3 2014 (PoS@efficacy interim) 0.49 0.62

Update 3, Q1 & 3 2014 (PoS@final, assume no PFS efficacy) 0.65 0.74

Update 3, Q1 & 3 2014 (PoS@final, assume we pass PFS efficacy) 0.31 0.32

Update 4, Q1/2015: PoS@final 0.31
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Update 5: final analysis Goya

Goya

Number of events 405

Efficay boundary for hazard ratio 0.820

Unblinding 14 Jul 2016

Observed hazard ratio 0.92

Primary publication Goya: Vitolo et al. (2017).
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Summary of case study

Example for PoS update throughout lifecycle of drug development program.

Updates using external (other trials) and internal (passing of interim analyses)

data.

Quantitative updates inform assessment. Stakeholders might not endorse it.

Communication is key!

Caveats:

GAUSS used with two snapshots.

Only for PFS interims, we pre-specified updates before we learned interim decisions.

Used point estimates where available, did not account for variability.

Uncertainty in response model not accounted for.

iDMC issued recommendation taking into “totality of information”.

Prior “back-engineered”, not formally elicited.
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What exactly were you
trying to tell us?
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Discussion

Methodology to update PoS after not stopping at an interim analysis.

PoS 6= power ⇒ recalibrate stakeholders.

Density of power values bathtub-shaped for typical development scenario.

Sensible to summarize this distribution in one number which we call BPP?

Prior with large variance not necessarily uninformative!

Extension to >1 interims straightforward. Code for two interims in bpp.

Project teams within Roche routinely apply this methodology. Biggest

advantage: systematic assessment of available evidence.

No formal prior elicitation at Roche.

Kaspar Rufibach Bayesian Predictive Power in drug development 74 / 108



Open questions

All in all nice exercise in applied statistics. Led to:

Two methodological publications: Rufibach et al. (2016a),

Rufibach et al. (2016c).

R package bpp: Rufibach et al. (2016b).

> library(bpp)

> browseVignettes(package = "bpp")

Open questions:

How to select prior?

Many trials, i.e. entire company portfolio: How does shape of g determine fate

of your portfolio, or company?

Explore set of biomarker cutoffs in Phase II, take largest subgroup that still beats

TPP. How to reflect this “strategy” in computation of PoS, i.e. how much does

PoS need to be penalized? Shrinkage?
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Thank you for your attention.
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Closed form of PoS if prior is Normal

Lemma (Explicit computation of PoS)

Assuming the prior is Normal with density qprior, mean θ0, variance σ2
0 , and is

independent of the random variable θ̂final. Then

PoS :=

∫
Pθ(θ̂final ≤ θsuc)qprior(θ)dθ = Φ

( θsuc − θ0√
σ2

final + σ2
0

)
.

Proof: Use law of total probability and properties of Normal distribution. See

Rufibach et al. (2016c).

References containing alternative proofs: Spiegelhalter et al. (1986),

O’Hagan et al. (2005), Proschan et al. (2006), or Dmitrienko and Wang (2006).
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Update PoS with external information

Assume we have external estimate θ̂extern of treatment effect, with SE(θ̂extern):

Study from competitor, collaborative group, ...

Internal study in same or related program, ...

Quantify knowledge with Normal density qdata, update prior qprior to get qposterior.

PoS formula...

PoS =

∫ ∞
−∞

Pθ(θ̂final ≤ θsuc)qprior(θ)dθ

...becomes:

PoS =

∫ ∞
−∞

Pθ(θ̂final ≤ θsuc)qposterior(θ)dθ.

Simply update prior with external information, recompute PoS.

Power part remains unaffected.
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Update PoS after an unblinded interim analysis

Assume:

Interim analysis is performed.

Hazard ratio estimate θ̂interim known to the sponsor.

Knowledge internal (as opposed to “external”) to the trial!

PoS formula becomes:

PoS =

∫ ∞
−∞

Pθ(θ̂final ≤ θsuc|θ̂interim = θinterim)qprior(θ)dθ.

Power becomes conditional power.

Potentially may also want to update qprior ⇒ qposterior.

Need to account for correlation between θ̂interim and θ̂final ⇒ computations based on

independent increments property of logrank statistics.

Rufibach et al. (2016c) for details.
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Update PoS after an unblinded interim analysis

Computation: θ̂interim and θ̂final are correlated!

By independent increments property of logrank statistic, see Rufibach et al. (2016c):

Pθ(θ̂final ≤ θsuc|θ̂interim = θinterim) =

= Φ
(dfinalθsuc − dinterimθinterim − (dfinal − dinterim)θ√

4(dfinal − dinterim)

)

Conditional power. Proschan et al. (2006): Derivation based on properties of

Brownian Motion (“B-value framework”).

Bayes ⇒ simply plug-in estimate into density:

qposterior(θ|θ̂interim = θinterim) ∝ exp
(
−

dinterim

8
(θinterim − θ)2

)
.
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Summarize conditional power and posterior density functions
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Bivariate Normality of (θ̂interim, θ̂final)

Page numbers and formula references below refer to Jennison and Turnbull (2000).

After stage k (k = interim, final),

consider logrank teststatistic Sk ∼ N(θdk/4, dk/4) (formula 3.15, p. 78ff),

and look at the transformation θ̂k = Sk/(dk/4) ∼ N(θ, 4/dk ) (= log hazard

ratio estimate, p. 78/79).

Apply standard group sequential framework for Normal teststatistics to get bivariate

Normality of (θ̂interim, θ̂final) and covariance between θ̂interim and θ̂final.

Covariance: Write θ̂k as sum of Normals, compute covariance explicitly (p. 49/50).

Alternatively:

Use general conditional power framework, as outlined in Proschan et al. (2006)

(see p. 20 for an explicit computation).

Not clear how to adapt to “interval knowledge only”, though.
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Continuous and binary endpoints

Continuous endpoint:

Known variance ⇒ setup dealt with above.

Unknown variance: assess sensitivity to various assumed variances.

Binary endpoint, see discussion in O’Hagan et al. (2005):

Effect estimate also depends on proportion π1 in control group ⇒ sensitivity

analysis w.r.t. to π1.

Power function can only be derived if Normal approximation is assumed to be

exact (i.e. proportions plugged-in in variance are assumed known) ⇒ uncertainty

in variance estimation ignored.

No closed formula for power. Numerically compute PoS using joint distribution

of proportions in control and treatment group.

Want to account for all uncertainties, i.e. also in variance estimation ⇒ simulate.

Choice of prior? Herson (1979): “Uniform priors give too much weight on

extreme cases”⇒ bathtub!

Kaspar Rufibach Bayesian Predictive Power in drug development Continuous and binary endpoints 85 / 108



Update after more than one interim analysis

What does change?

( θ̂interim

θ̂final

)
∼ N

(( θ

θ

)
,
( 4/dinterim 4/dfinal

4/dfinal 4/dfinal

))
becomes

 θ̂int1

θ̂int2

θ̂final

 ∼ N


 θ

θ

θ

 ,

 4/dint1 4/dint2 4/dfinal

4/dint2 4/dint2 4/dfinal

4/dfinal 4/dfinal 4/dfinal


 .

Blinded interim: Compute conditional power Pθ(θ̂final ≤ θsuc|θ̂1 ∈ I1, θ̂2 ∈ I2) and

updated weighting density q1(θ|θ̂1 ∈ I1, θ̂2 ∈ I2).

Code available.

Unblinded interim: Not worked out yet.
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Interim analysis based on surrogate endpoint

MIRROS study:

Acute myeloid lymphoma (AML), 2nd line.

Phase 3, 2:1 randomized, compare Idasanutlin + CT vs. CT alone.

Primary endpoint OS.

Final analysis planned after 275 events to detect HR 0.667 with 85% power.

Special features of MIRROS:

Power computation takes into account cure proportions in both arms.

Futility interim analysis planned after 120 patients (LIP enabling).

Interim passed if either (OR for CR ≥ 2.5) or (HR for EFS ≤ 1 and OR for

CR ≥ 2).

Simulation models:

Sample size received via simulation ⇒ to account for cure proportion.

Stopping probabilities at interim received via simulations in mechanistic model

associating CR ⇒ EFS ⇒ OS.

Kaspar Rufibach Bayesian Predictive Power in drug development Interim analysis based on surrogate endpoint 87 / 108



Interim analysis based on surrogate endpoint

Initial PoS:

Product of qualitative reference value for small molecule cPoS for Phase 2 (35%)

and reference values for cPoS for Phase 3 (65%) ⇒ 0.2275.

Tune “pessimistic prior” from Rufibach et al. (2016c) to get initial PoS to beat

TPP equal to 0.2275.

Question: How to update initial PoS (OS) if we pass interim (CR, EFS)?

1 Take simulation model.

2 Choose parameters that reflect the alternative hypothesis used for sample size

planning and simulate 10’000 trials.

3 Look at distribution of OS HRs for those simulated scenarios that jump the

interim hurdle based on CR and EFS.

4 90% of these OS HRs are ≤ 0.993, 80% are ≤ 0.865.

5 Report BPP update for these boundaries.
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Efficacy interim analysis only

At efficacy interim not stopped with boundary HR > 0.722: we know that

0.722 ≤ HR or

θ̂interim ∈ (log(0.722),∞).

How does PoS change after this interim?

PoS decreases from 0.683 to 0.317.

Why?
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Efficacy interim analysis only - plot both factors in PoS formula
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Green density not a Normal density, but product of difference of values of Normal

CDF and prior density qprior.

Centering of posterior at ≈ θsuc is coincidental!
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Efficacy interim analysis only - sensitivity analysis

PoS at trial start: 0.683.

In our example, with θefficacy = log(0.722) and θfutility = ∞:

θ̂interim value of θ̂interim PoS after not stopping

∈ (θefficacy, θfutility) (log(0.722),∞) 0.317

= θefficacy log(0.722) 0.944
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Efficacy interim analysis only - comments

After not stopping at interim, PoS decreases from 0.683 to 0.317.

Why does PoS decrease after not stopping?

Prior with prior mean log(0.7) assigns weight to hazard ratios smaller than

hazard ratio to finally beat (θsuc = log(0.809)).

Not stopping shifts mass of prior qprior to the right of 0.722 for qposterior ⇒ more

weight on hazard ratios > θsuc.

Together with decrease in conditional power accounts for lower PoS after not

stopping.

Amount of decrease largely depends on information fraction.

Rule-of-thumb: Expect PoS around 1/3 if not stopping after efficacy interim

after 2/3 of information.
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Futility and efficacy interim analysis

Interim passed with boundaries 0.722 < HR ≤ 1: we know that

0.722 < HR ≤ 1 or

θ̂interim ∈ (log(0.722), log(1)].

How does PoS change after this interim?

PoS decreases from 0.683 to 0.437.

Why?
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Futility and efficacy interim analysis - factors in PoS formula
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Futility and efficacy interim analysis - sensitivity analysis

PoS at trial start: 0.683.

In our example, with θefficacy = log(0.722) and θfutility = log(1):

θ̂interim value of θ̂interim PoS after not stopping

∈ (θefficacy, θfutility] (log(0.722), log(1)] 0.437

= θefficacy log(0.722) 0.944

= (θefficacy + θfutility)/2 log(0.850) 0.298

= θfutility log(1) 0.004
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Futility and efficacy interim analysis - comments

After not stopping at interim, PoS decreases from 0.683 to 0.437.

Why does PoS decrease after not stopping?

Prior with prior mean log(0.700) assigns weight to hazard ratios smaller than

hazard ratio to finally beat (θsuc = log(0.809)).

Not stopping shifts mass of prior qprior to the right of 0.722 and left of 1.000 for

qposterior ⇒ posterior “squeezed” between boundaries, in this case ≈ centered at

θsuc.

Bit more mass to the right of θsuc. Together with small decrease in conditional

power accounts for lower PoS after not stopping.
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CLL11

Phase III randomized 3-arm trial in CLL.

Arms: Chlorambucil (C), rituximab + C, Gazyva + C, randomization 1:2:2.

Two results, based on different snapshots (Stage 1a, Stage 1b):

Stage 1a: λ̂GvsC = 0.14, based on 123 events.

SE(log λ̂GvsC) = 2.12 · 123−1/2 = 0.19.

Stage 1b: λ̂RvsC = 0.32, based on 175 events.

SE(log λ̂RvsC) = 2.12 · 175−1/2 = 0.16.

Assuming Exponentiality: λ̂GvsR ≈ λ̂GvsC/λ̂RvsC = 0.44.

Standard error of log λ̂GvsR = log λ̂GvsC − log λ̂RvsC:

SE(log λ̂GvsR) =

√
SE(log λ̂GvsC)2 + SE(log λ̂RvsC)2

=
√

0.192 + 0.162

= 0.25 =
√

4/64.2.

Quantify knowledge: XCLL11 ∼ N(log 0.44, 4/64.2).

Kaspar Rufibach Bayesian Predictive Power in drug development Interim analysis based on surrogate endpoint 97 / 108



GAUSS

Updated PFS analysis:

XGAUSS ∼ N(log 0.96, 4/76).
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GOYA: NHL and DLBCL 1st line studies
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Futility analysis: continue trial if complete response proportion difference among

first 200 randomized patients ≥ 5%.

Same approach as GALLIUM.
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GOYA: NHL and DLBCL 1st line studies
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Quantify knowledge from GOYA via

XGOYA ∼ N(log 0.544, 4/37).
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Synthesizing different sources

Weighted mean:

different indications,

first line vs. relapsed/refractory,

GOYA & GALLIUM estimates based on model associating HR to CR rate

difference, based on few studies only.

Weighted mean assigns each study the importance one believes it has for GOYA /

GALLIUM.

Various approaches: elicit weights from clinicians, meta-analysis, extreme scenarios, ...
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Discussed scenarios
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data−driven conditional probability DDCP

DDCP for GALLIUM at the end of February 2013, depending on weight scenario

19: GOYA modelling only

18: GALLIUM modelling only
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12: Meta analysis fixed effects

11: CLL11 10percent, others equal

10: omit CLL11, others equal

9: only consider futilities

8: omit CR futilites, GAUSS high

7: omit CR futilites, others equal

6: omit CR futilites, CLL11 high

5: omit GOYA, others equal

4: NHL high 2

3: NHL high 1

2: GOYA and GALLIUM low

1: all equal ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

DDCP from scratch
Update 2011 DDCP
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Backup slides: parametric cytotoxic-cytostatic model.
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Quantities

E: experimental arm, S: standard arm.

Response proportions:

θS: Probability of response in standard treatment.

θE: Probability of response in experimental treatment.

Quantity that inputs the model (the “x” in f (x)):

∆ = θE − θS.

Further derived quantities:

λ: Hazard in standard treatment, non-responders.

c: Hazard ratio experimental vs. standard treatment.

r : Hazard ratio responders vs. non-responders.
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Statistical model

We assume proportional hazards for E vs. S and responders vs. non-responders:

Hazard in experimental treatment, non-responders: λE, non-resp := c · λ.

Hazard in standard treatment, responders: λS, resp := r · λ.

Hazard in experimental treatment, responders: λE, resp := c · r · λ.

Hazard ratio for experimental vs. standard:

HRE vs. S =
λE

λS
=

cλ(1− θE) + crλθE

λ(1− θS) + rλθS

= c
(

1 +
∆(r − 1)

(r − 1)−1 + θS

)
.

Function HRE vs. S(∆) that relates HRE vs. S to response proportion difference ∆.
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Statistical model

Hazard ratio HRE vs. S as a function of response proportion difference ∆:

HRE vs. S(∆) = c
(

1 +
∆(r − 1)

(r − 1)−1 + θS

)
.

Quantities:

θS: Response proportion standard treatment, assumed based on historical data.

r : Hazard ratio responders vs. non-responders. Will be estimated based on

model (see below).

c: Let c0 be basic cytostatic effect, typically assumed from historical data.

Carreras et al (2011): Assumed c = c0(1 − p∆), with p link factor.

GAZYVA gating in 2011: c = c0 · ORp
E vs. S, with ORE vs. S odds ratio E vs. S, p link

factor. “Better fit” for small values of ∆.
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GAZYVA specific model

Model used in GAZYVA 2011 gating:

HRE vs. S(∆) = c0 ·ORp
E vs. S

(
1 +

∆(r − 1)

(r − 1)−1 + θS

)
.

Parameters assumed from historical data:

θS: response proportion in standard treatment.

Input data:

∆: response proportion difference for each study. The xi ’s in the regression

model.

HRE vs. S: hazard ratio for each study. The yi ’s in the regression model.

ORE vs. S: additional study-specific input data.

Parameters to be estimated: c0, p, r .
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GAZYVA specific model: estimation of parameters

Estimation of parameters r , c0, p via non-linear regression model:

General model as in textbooks:

yi = f (β, x′i ) + εi .

2011: proc nlmixed in SAS. 2013: Ported to R.

No random effects, so not a mixed but simple non-linear regression model.

εi : independent Normal with mean 0 and variance σ2.

Specified to GAZYVA gating setup:

HRE vs. S, i(∆) = c0 ·ORp
E vs. S, i

(
1 +

∆i (r − 1)

(r − 1)−1 + θS

)
.

“Observations” in regression model are studies, so i runs through studies under

consideration.

Response model: studies not weighted according to size.
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Backup slides: synthesizing evidence for Update 2.
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Synthesizing different sources

Compute weighted mean of different sources:

Xdata = wCLL11XCLL11 + wGAUSSXGAUSS +

+wGALLIUMXGALLIUM + wGOYAXGOYA,

weights sum up to 1.

Assuming these random variables are independent (...)

⇒ Xdata Normal with mean

IE(Xdata) = wCLL11 log(0.44) + wGAUSS log(0.96) +

+wGALLIUM log(0.806) + wGOYA log(0.544)

and variance

Var(Xdata) = w2
CLL11(4/64.2) + w2

GAUSS(4/76) +

w2
GALLIUM(4/12) + w2

GOYA(4/37).

Denote density of Xdata by φdata.
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Finally compute PoS

Now have all ingredients to compute PoS for GALLIUM:

Yfinal ∼ N(θ, σ2
final = 4/nfinal), i.e. nfinal: Protocol. X

λMD: Protocol, target product profile. X

φdata.

X

Two approaches to finally compute PoS:

1 Simply use φdata = φdata. Compute PoS from scratch, no update.

DDCP =

∫ ∞
−∞

Pθ

(
Yfinal ≤ log λMD

)
φdata(θ)dθ.

2 Quantify initial 2011 PoS (= 0.41) via N(λprior, σ
2
prior) with density φprior. Update

this prior with φdata in a conjugate Normal Bayesian model to get

φdata = φposterior.

DDCP =

∫ ∞
−∞

Pθ

(
Yfinal ≤ log λMD

)
φposterior(θ)dθ.
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R version and packages used to generate these slides:

R version: R version 3.5.1 (2018-07-02)

Base packages: stats / graphics / grDevices / utils / datasets / methods / base

Other packages: bpp / mvtnorm / reporttools / xtable

This document was generated on 2019-05-21 at 15:27:17.
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