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Model-based meta-analysis

Meta-analysis: methods to combine multiple studies

Potential heterogeneity between studies

When dosing information available from different studies

e Dose-response models such as E,,, are applied

Model-based meta-analysis (MBMA) (Mandema et al., 2005)

1/18



An illustrative example (Thorlund et al., 2014)

e The efficacy of 7 triptans in migraine pain relief
e Primary endpoint: Headache free at 2 hours (binary)
e Consists of 70 RCTs

riptan

letriptan

y riptan

fiptan
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An illustrative example (Thorlund et al., 2014)

e Considering only eletriptan vs placebo trials

e Consists of 12 RCTs
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An illustrative example (Thorlund et al., 2014)

e Considering only eletriptan vs placebo trials

e Consists of 12 RCTs

Trial  Dose Number Number
(mg) of patients of responses

1 0 70 6
1 40 69 24
2 0 195 43
2 20 197 93
2 40 173 61
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Probability of patients with headache-free response at 2 hours
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Methods



Four statistical models for MBMA

e Trial i and dose k, number of events r; , ~ Bin(m; «, nj «)

i Wi, (control arm)
|Og|t(7T,',k) =
Wi+ dik, (treatment arm)

o 4 the effect on control arm (baseline risk)

e 0;x: relative effect (arm with dose k vs control arm)
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Four statistical models for MBMA

e Trial i and dose k, number of events r; , ~ Bin(m; «, nj «)

i Wi, (control arm)
|Og|t(7T,'7k) =
Wi+ dik, (treatment arm)

o 4 the effect on control arm (baseline risk)

e 0;x: relative effect (arm with dose k vs control arm)

e Dose-response relationship e.g. Eax:

Enax - dose;
f- d ; — max I,
( 0s¢ ’k) ED50 + dose,;’k
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Four statistical models for MBMA

1. Baseline model (Boucher and Bennetts, 2016)

o pi~ N(p,0%)

o 5i,k = f(dose,-_,k)
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Four statistical models for MBMA

1. Baseline model (Boucher and Bennetts, 2016)

o i~ N(u,o?)

o 5i,k = f(dose;yk)

2. Contrast-based (CB) model (Mawdsley et al., 2016)

e Baseline risks p; as fixed effects
e Two-arm trials: &; x ~ N (f(dose; k), 7%)
e Three-arm trials: §; = (8i,1,2,01,1,3)" ~ N(f(dose;), X)

2 2
2
where ¥ = 72— Té]
/2 T
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Four statistical models for MBMA

3. Baseline + CB model (Dias and Ades, 2016)

o i ~ N(u,02) as in the Baseline model

e 0;x is modelled as in the CB model
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Four statistical models for MBMA

3. Baseline + CB model (Dias and Ades, 2016)

o i ~ N(u,02) as in the Baseline model

e 0;x is modelled as in the CB model

4. Arm-based (AB) model (Zhang et al., 2014)

° |0git(ﬂ',‘,k) = ik

. N o )
e Two-arm trials: 6; ~ N(f(dose;),X) where ¥ = | , 4
/2 T
Ly (control arm)
f(dose; k) = Epox-dose;
I+ Ebgordose. 5 (treatment arm)
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Remarks on the four models

1. Baseline model: Between-trial heterogeneity only in baseline risks p;
2. Contrast-based model: No overall baseline risk estimate
3. Baseline + CB model: Two variance parameters o2 and 72

4. Arm-based model: Modelling absolute effects (as opposed to
relative effects)
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Application




Considering 3 drugs for illustration
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Priors and computations

e Same priors are used across 4 models

o N(0,10%) for pt, Emax and EDso

e HN(2.5) for o and 7.
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Priors and computations

e Same priors are used across 4 models
o N(0,10%) for pt, Emax and EDso
e HN(2.5) for o and 7.

e Computations are done using Stan.

e Using non-centered parametrization and Cholesky decomposition
(Stan Development Team, 2019)
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2) Contrast-based model
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3) Baseline + Contrast-based model
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4) Arm-based model
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(Model-based) meta-analysis using Stan: MetaStan

Available on CRAN
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(Model-based) meta-analysis using Stan: MetaStan

Available on CRAN

Converting dataset to a one-arm-per-row format

create_MBMA_dat(data = data,

armVars = c(dose = "d", responders = "r",
sampleSize = "n"),
nArmsVar = "nd")
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(Model-based) meta-analysis using Stan: MetaStan

Available on CRAN

Converting dataset to a one-arm-per-row format

create_MBMA_dat(data = data,

armVars = c(dose = "d", responders = "r",
sampleSize = "n"),
nArmsVar = "nd")

Fitting an arm-based model with E,,, functional form

MBMA_stan(data = datMBMA,
model = "AB_Emax",
Emax_prior = c(0, 10),
tau_prior_dist = "half-normal",

tau_prior = 0.5)
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Conclusions




Discussion and conclusions

e Some parametrizations (e.g. AB and CB + Baseline models) might
be more suitable for dose-response predictions in MBMA than others

e We also considered different functional forms f(dose; ) (e.g.
log-linear and logistic) other than Ep,,.

e 5 of 7 triptans: Bayesian model averaging puts all weights on Ep.x
model

e Work in progress
e Simulations to assess operating characteristics

e Model-based network meta-analysis
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4) Arm-based
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Parameter estimates (Zolmitriptan)

1 Emax ED50 g T
Baseline -2.05 (0.17) 2.24 (0.32) 2.07 (0.85) 0.54 (0.12) -
CB -2.08 (0.07) 2.43 (0.48) 2.54 (1.34) - 0.12 (0.10)
Baseline + CB  -2.04 (0.17) 2.29 (0.39) 2.25 (1.06) 0.54 (0.12) 0.11 (0.08)
AB -2.01 (0.16) 2.44 (0.60) 3.13 (1.92) 0.48 (0.08) -




WAIC estimates

Eletriptan  Sumatriptan  Zolmitriptan

Baseline 208.3 (30.5) 437.1(23.7) 189.3 (8.2)
CB 229.1 (7.6) 4023 (11.7)  190.4 (8.4)
Baseline + CB  238.3 (10.7) 407.7 (13.5)  189.7 (8.1)
AB 2292 (8.3) 396.2 (8.4) 194.0 (7.9)




Bayesian model averaging

e Require the marginal likelihood

e The bridge sampling estimator (Gronau et al., 2018) using the
bridgesampling R package

e Each model is weighted by its posterior probability
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