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Mass Balance and SIRS Dynamics

‘S’ ≡ Susceptible; ‘I’ ≡ Infectious; ‘R’ ≡ Recovered

Mass balance: The classic SIR model assumes that there are no births
and deaths from causes other than the disease itself. Thus, the
numbers who are susceptible, infectious, and recovered satisfy,

S(t) + I (t) + R(t) = N

where N is the size of the population. From the equation above,

dS

dt
+

dI

dt
+

dR

dt
= 0

Temporal-only SIRS dynamics, where ‘R’ returns to ‘S’:
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Classic SIRS (CSIRS) Model

The SIRS (susceptible-infectious-recovered-susceptible) model is a
type of compartment epidemic model that has been used widely to
study the dynamics of infectious diseases in large populations (e.g.,
Anderson and May, 1991, OU Press).
The Classic SIRS (CSIRS) Ordinary Differential Equations (ODEs) are
nonlinear (where φ = 0 gives the traditional SIR model):

dS

dt
= −βSI + φR,

dI

dt
= βSI − γI ,

dR

dt
= γI − φR,

In the ODEs above, β, γ, and φ denote the transmission rate, the
rate of recovery, and the rate of loss of immunity, respectively, in
units of per day (d−1).
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HSIRS Model

Hierarchical SIRS (HSIRS) has a measurement model (Poisson) and a
latent process model that satisfies the ODEs in the previous slide.

Notation:

Z(t) ≡ (ZS(t),ZI (t),ZR(t))′: observed counts S , I , R at time t
(noisy data).

λ(t) ≡ (λS(t), λI (t), λR(t))′: latent (mean) counts S , I , R at time t;
λN ≡ λS(t) + λI (t) + λR(t), a constant over time;
λS(t) ≡ λNPS(t), λI (t) ≡ λNPI (t), λR(t) ≡ λNPR(t).

P(t) ≡ (PS(t),PI (t),PR(t))′: latent rates of S , I , R at time t, and
PR(t) = 1− PS(t)− PI (t).

W(t) ≡ (WS(t),WI (t))′: hidden log odds ratios of the true rates of
S/R, I/R at time t.

Parameters θ include β, γ, φ, and log-odds-ratio variances.
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The Latent Dynamical Process in HSIRS

From the SIRS ODEs, the deterministic difference equations on the latent
mean counts λS(t), λI (t), and λR(t), for discrete time t = 1, 2, ... in units
of ∆ days, are:

λS(t + 1) = λS(t)− β∆λS(t)λI (t) + φ∆λR(t),

λI (t + 1) = λI (t) + β∆λS(t)λI (t)− γ∆λI (t),

λR(t + 1) = λR(t) + γ∆λI (t)− φ∆λR(t).

Since a general latent rate satisfies P(t) ≡ λ(t)/λN ,

PS(t + 1) = PS(t)− β∆λNPS(t)PI (t) + φ∆PR(t),

PI (t + 1) = PI (t) + β∆λNPS(t)PI (t)− γ∆PI (t),

PR(t + 1) = PR(t) + γ∆PI (t)− φ∆PR(t).
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Fully Bayesian SIRS (we call it ASIRS)

Data Model (variability in observed S , I , and R)
The measurement is assumed Poisson distributed. For a generic {Z (t)}
and {P(t)}:

Z (t)|P(t) ∼ ind. Poisson(λNP(t))

Process Model

WS(t) ≡ log
(

PS (t)
PR(t)

)
,WI (t) ≡ log

(
PI (t)
PR(t)

)
(transform to W-scale)

PS(t) + PI (t) + PR(t) = 1 (mass balance)

W(t + 1) = µW (t) + ξ(t + 1) (dynamics on W-scale)

ξ(t) ∼ MVN(0, diag(σ2ξS , σ
2
ξI

)) (small-scale variation)

Parameter Model (prior information on parameters)[
β, γ, φ, σ2ξS , σ

2
ξI

)
]
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Simulated Data: CSIRS (Classic) v. ASIRS (Bayesian)

Classic and Bayesian models fitted to days 1-35: smooth and forecast days 1-45
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Conclusion

Bayesian SIRS models account for uncertainty in the measurements
(Data Model) and uncertainty in the parameters (Parameter Model, or
prior). Bayesian SIRS models vastly outperform Classic SIRS models
(see the example above and the simulation experiment in the paper).

All details and more are available in:
Zhuang, L. and Cressie, N. ”Bayesian hierarchical statistical SIRS
models.” Stat. Methods Appl., 23, 601-646 (2014).

Further, a multi-species SIR model that is dynamical and Bayesian
was presented in:
Zhuang, L., Cressie, N., Pomeroy, L., and Janies, D. “Multi-species
SIR models from a dynamical Bayesian perspective.” Theor. Ecol., 6,
457-473 (2013).

These results are “temporal” only. Now go “spatio-temporal”!
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