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In the developing world, what are
people dying from?
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*From Nichols et al. (2018) “The WHO 2016 verbal autopsy instrument: An international standard suitable for automated analysis”
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Vital statistics in developing countries

Methods:

I Full autopsy

I Minimally invasive autopsy

I Verbal autopsy

Barriers:

I High cost

I Large proportion of deaths occurring outside the health system

I Insufficient facilities/equipment

I Lack of training/expertise among personnel

I Culture or religious apprehension

*From Bassat et al. (2013) “Development of a post-mortem procedure to reduce the uncertainty regarding causes of death in developing countries”
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Verbal autopsy framework

The verbal autopsy (VA) is “a protocolised procedure that allows the
classification of causes of death through analysis of data derived from
structured interviews with family, friends, and caregivers.”

*From Bassat et al. (2013) “Development of a post-mortem procedure to reduce the uncertainty regarding causes of death in developing countries”
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PHMRC data

The Population Health Metrics Research Consortium (PHMRC) created a
“Gold Standard” VA database for training/testing VA models.

I Includes 7,836 adults, for whom the broad list of causes for analysis
number 34

I Data collected from 2007-2010 across six sites in four countries

I Questions include binary, numeric, categorical, and narrative; e.g.:

Did (s)he have breathlessness?

For how many days did (s)he have breathlessness?

During the illness that led to death did his/her breathing sound like
any of the following: [stridor/grunting/wheezing]?
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Analyzing verbal autopsy data

I Physician coding

Expensive

Not reproducible

Relies on expert judgment

I Computer coding

Inexpensive

(Can be) reproducible

Relies on algorithms, training data, and/or expert judgment
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Covariate dependence
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Covariate dependence (continued)
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Modeling goals

I Capture dependence of symptoms given a cause

I Share information across causes via hierarchical modeling

I Allow both the conditional prevalence and the conditional association
between symptoms to vary with covariates

I Probabilistically predict cause of death for an individual given their
symptoms

I Improve on cause of death (COD) and cause-specific mortality
fraction (CSMF) estimation relative to current state-of-the-art VA
algorithms
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Model structure

Recall the goal is to learn the cause of death yi given symptoms si .

π(yi = c |si ) =
π(si |yi = c)π(yi = c)

ΣC
h=1π(si |yi = h)π(yi = h)

, i = 1 . . .N.
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Prior over causes

{Pr(yi = 1), . . . ,Pr(yi = C )} ∼ Dirichlet(a1, ..., aC ).

Under the assumption that little is known about the CSMF in the region
of interest, but that the distribution of deaths across causes is
non-uniform, set a1 = . . . = aC < 1.
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Likelihood of symptoms given cause

I In order to allow this framework to encompass data of mixed type,
define sij = fj(zij), j = 1, . . . , p, where fj() depends on the symptom.

E.g., for binary sij , fj(zij) = 1(zij > 0).

E.g., for continuous sij , fj(zij) = zij .

I Introduce a factor model to account for the correlation in
zi = [zi1, . . . , zip]′.

The traditional factor model is:

zi = Ληi + εi , ηi ∼ N(0, IK ),

εi ∼ N(0p,Σ0), Σ0 = diag(σ2
1 , . . . , σ

2
p)

i = 1, . . . ,N.

The prior induced on the latent zi by integrating out the unknown ηi is
then zi |yi ∼ N(0p,ΛΛ′ + Σ0).
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FARVA model

Allow the covariance to depend on cause of death.

zi = Λyiηi + εi , ηi ∼ N(0K , IK ), εi ∼ N(0p,Σ0),

zi |yi ∼ N(0p,Λyi Λyi
′ + Σ0).

(1)

Allow the covariance to vary with covariates xi .

zi = Λyi (xi )ηi + εi , ηi ∼ N(0K , IK ), εi ∼ N(0p,Σ0),

zi |yi ∼ N(0p,Λyi (xi )Λyi (xi )
′ + Σ0).

(2)

Introduce a cause- and covariate- dependent mean structure.

zi = Λyi (xi )ηi + εi , ηi ∼ N(ψyi (xi ), IK ), εi ∼ N(0p,Σ0),

zi |yi ∼ N(Λyi (xi )ψyi (xi ),Λyi (xi )Λyi (xi )
′ + Σ0).

(3)
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FARVA model (continued)

Recall zi = Λyi (xi )ηi + εi , ηi ∼ N(ψyi (xi ), IK ), εi ∼ N(0p,Σ0)

Define the entries of the latent mean vector hierarchically:

ψyi ,k(xi ) =αT
yi ,k

xi
αyi ,k ∼ NB(µαk

,Σαk
),

µαk
∼ NB(A0, L0), Σαk

∼ IW(v0,D0),

k = 1, . . . ,K .

Features:

I Latent mean structure captured parsimoniously

I Information on symptom prevalence is shared across causes
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FARVA model (continued)

Recall zi = Λyi (xi )ηi + εi , ηi ∼ N(ψyi (xi ), IK ), εi ∼ N(0p,Σ0).

Decompose loadings matrix as in Fox and Dunson (2015):

Λyi (xi ) = Θyiξyi (xi ),

Θyi ∈ Rp×L,

ξyi (xi ) = {ξi ,lk(xi ), l = 1, . . . , L, k = 1, . . . ,K}.

Features:

I Elements of ξyi (xi ) are modeled hierarchically (as in the previous
slide) so as to share information across causes

I Stochastic shrinkage of columns of Θyi means number of factors K
need only be an upper guess [Bhattacharya and Dunson (2011)]

I Elements of of Θyi are also modeled hierarchically
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Determining COD for new observations

For person i∗ ∈ U∗, where U∗ denotes the group of individuals having
unknown COD, calculate

π(yi∗ = c |si∗) =
π(si∗ |yi∗ = c)π(yi∗ = c)

ΣC
c ′=1

π(si∗ |yi∗ = c ′)π(yi∗ = c ′)

for each potential cause c , and sample from the resulting discrete
distribution.

Then compute the population distribution of causes for individuals in U∗:

CSMFU∗ =

(
1

|U∗|
∑
i∗∈U∗

1(yi∗ = 1), . . . ,
1

|U∗|
∑
i∗∈U∗

1(yi∗ = C )

)
.
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PHMRC data runs

For each location assessed:

I Data split into 75% training, 25% test.

I Data cleaning steps used in OpenVA software performed, i.e. all
variables converted to dichotomous symptoms matching those used in
InterVA algorithm.

I Each model run, with FARVA including whether or not each decedent
was an elder (≥ 65) as a covariate.

I Running: repeat the above 100 times in all locations.
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Mexico City performance
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All locations (top cause accuracy)
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All locations (CSMF accuracy)

26 / 27



Future directions

I Discussed in paper (https://arxiv.org/a/moran_k_1.html):

Simulation study.

Inference on conditional symptom prevalence and associations.

Linking clinical, post mortem, and VA data.

I Package will soon be available (https://github.com/kelrenmor)

I Open area of research:

Explicit modeling of missingness under MNAR assumption.

Selection of symptoms for analysis.

VA form modification (shortening) for unhelpful symptoms.

Utilizing free-text portion.

Sharing information between various questionnaires.
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