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Introduction
Historical data

Ï Regulatory and pharmaceutical industry requirements
Ï Ethical concerns;
Ï Large unmet needs;
Ï Reduction of costs;
Ï Reduction of timelines;
Ï Reduction in sample sizes;
Ï Gold standard: randomized clinical trial (RCT).

Ï Data environment
Ï Increase in data availability;
Ï Increase in amount of data.

⇒ Try to be as close as possible to a randomized clinical trial using
historical data

Ï Key variables?
Ï Can balance be achieved on key covariates?
Ï Any condition for treatment assignment?

Alice Gosselin | Matching Methodologies for Historical Data



3

Introduction
Historical data

Ï Issue: treatment assignment may depend on covariates
Ï If no dependency, one could approximate the treatment effect by

difference in means without control on the covariates;
Ï But in historical data framework, it is not possible → need to find a

way to reduce this dependency.

Ï Goal: preprocess data to obtain a dataset with treated and
control units with similar observed baseline covariates, allowing
unbiased estimate of any quantity of interest such as the
Average Treatment effect on the Treated (ATT)

Ï Adjusted data could then also be integrated into an informative
Bayesian prior
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Introduction
Quantity of Interest

Notations
Ï Population N =N0 +N1

Ï random sample n = n0 +n1
Ï Binary treatment

Ti =
{

1 if treated
0 otherwise

Ï Xij value of j th pretreatment characteristic of unit i
Ï [Xi1,Xi2, ...,XiJ ] vector of characteristics for unit i

Ï fX |T=0 densities for covariates in the control group
Ï fX |T=1 densities for covariates in the treatment group
Ï Observed outcome for unit i : Yi =Yi(1)Ti +Yi(0)(1−Ti)

Ï Treatment effect τi =Yi(1)−Yi(0)
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Introduction
Quantity of Interest
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Introduction
Quantity of Interest

ATT =E [Y (1)−Y (0)|T = 1]
=E [Y (1)|T = 1]︸ ︷︷ ︸

A

−E [Y (0)|T = 1]︸ ︷︷ ︸
B

Ï A: estimated by the sample mean of the outcome among the
treated units

Ï B: counterfactual mean - not observed, mean of the outcome of
the treated units, had they, contrary to the fact, been in the
control group

Ï B 6≈ E [Y (0)|T = 0]: if there exists covariates leading to treatment
assignment, there is a risk that the outcome may be explained by
covariates instead of treatment administration

Selection Bias due to observed and unobserved confounders
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Introduction
Strong ignorability

Strong ignorability of treatment assignment
Ï No unmeasured confounder: Y (1),Y (0)⊥⊥T |X
Ï Common support: 0<P(T = 1|X )< 1

Ï Given a set of covariates:
Ï Treatment assignment and outcome are independent
Ï Every patient has a non-zero chance of receiving the treatment
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Propensity Score
Framework

Ï Balancing score b(Xi), function of the observed covariates, such
that:

Xi ⊥⊥Ti |b(Xi)

Ï This balancing score can be taken as the propensity score:

ps(X )=P(T = 1|X )

→ single composite score of all observed, measured , potential
confounders of the association between the treatment and the
outcome

Ï X ⊥⊥T |ps(X ) ⇒ observations with the same propensity score
must have the same distribution of observed baseline
characteristics independently of the treatment assignment
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Propensity Score
Framework

Ï In case of randomized clinical trial, the propensity score is known
Ï When no randomization is possible, the propensity score needs

to be estimated
Ï Logistic regression model - more commonly used:

treatment status ∼ observed baseline characteristics
Ï Generalized boosting method
Ï Generalized method of moments

2 Models when using propensity score
Ï Selection model

Ï always includes variables believed to have an impact on the
selection process

Ï misspecification can have high impact on the control of selection
bias

Ï Outcome model
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Propensity Score
Different methods

4 Methods to create a weighted/matched dataset using
propensity score

Ï Matching
Ï Stratification
Ï Covariate adjustment
Ï Weighting
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Propensity Score
Different Methods

Propensity Score Weighting
Ï Each unit receives a weight:

Ï For treated unit: wi = 1
psi

Ï For control unit: wi = 1
1−psi

where psi is the propensity score estimated for unit i
Ï Control influence of patients by weighting their responses with

their propensity score
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Propensity Score
Covariates choice - Different Approaches

Ï All measures baseline covariates

Ï All baseline covariates associated with the treatment assignment
variable T

Ï All covariates that affect the outcome (potential confounders)

Ï All covariates affecting both treatment assignment T and
outcome Y (true confounders)
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Propensity Score
Balance checking

Ï Is the propensity score model well specified?

Ï Need to check the balance between treated and control units in
terms of baseline covariates before and after matching

Ï First option: look at standardized difference, meaning a sum up
difference between means and prevalences

Ï Second (and preferred) option: look at the entire distribution of
the covariates
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Entropy Balancing
Framework

Ï Obtain treated and control groups with similar moments of
covariate distributions

Ï No need to verify covariate balance

Ï Not susceptible to model misspecification

Ï As for propensity score weighting, there is no need to drop any
patients
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Entropy Balancing
Balance constraints

Ï Recall: ATT =E [Y (1)|T = 1]−E [Y (0)|T = 1]
Ï Estimation of the counterfactual mean:

áE [Y (0)|T = 1]=
∑

{i |T=0} Yiwi∑
{i |T=0} wi

Optimization Problem
Ï wi | minwi H(w)=∑

{i |T=0} h(wi)

R moment constraints:
∑

{i |T=0}

wicri(Xi)=mr r ∈ 1, ...,R (1)

Normalization:
∑

{i |T=0}

wi = 1 (2)

Normalization: wi ≥ 0 ∀i |T = 0 (3)
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Entropy Balancing
Balance constraints

Ï h(.) is a distance metric such as Kullback divergence

h(wi)=wi log(wi/qi)

Ï qi are base weights, usual choice is uniform qi = 1/n0
Ï h(.) → loss function measuring the distance between the

distribution of estimated control weights and the distribution of
the base weights

Ï mr : r th order moment of a given variable Xj from the treated
group

Ï cri(Xij): moment function for control group for a given variable Xj

cri(Xij)=X r
ij or (Xij −µj)

r

Ï Entropy balancing: no need to check for balance because the
weights are estimated directly using balance constraints

Alice Gosselin | Matching Methodologies for Historical Data



17

Simulations
Introduction

Ï Approaches: propensity score weighting / entropy balancing
Ï Models: mis-specified model or specified model
Ï Measurement: mean Overall Response Rate

Active Treatment Control/SoC
Current Study Group A Group B

Historical Study Group C Group D

Ï Group A: patient-level data
Ï Group B: no data
Ï Group C: no data available

Ï Group D: patient-level or
aggregated data

Ï Utlimate goal: compare Group A and Group B
Ï Simulations goal: preprocess the data through simulation of

Group B and D
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Simulations
Introduction

Ï Simulated variables:
Ï trt: treatment indicator

Ï 1: if patients are from control group of the current clinical trial
Ï 0: if patients are from control group of the historical clinical trial

Ï X1, X2: covariates
Ï Y: outcome

Ï Two simulated datasets will be used: one for propensity score,
one for entropy balancing (based on the previous one)

Propensity score requires patient-level data, while entropy balancing
works also if historical data are only aggregated data
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Simulations
Introduction

Ï ORRhistocontrol = mean in response rate in the historical control
group

Ï ORRcurrentcontrol = mean in response rate in the current control
group

Ï Check imbalance between both groups in terms of X1 and X2

X1 X2
historical current historical current
0.2446 0.757 0.2072 0.1536

Ï Notice a high difference in mean of X1 between the two groups,
this difference is smaller but still visible for mean of X2

⇒ Use propensity score or entropy balancing in order to correct this
imbalance
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Simulations
Propensity Score

Ï Propensity scores are calculated based on a logistic regression
Ï Model 1 - mis-specified: trt ∼X1 +X2
Ï Model 2 - specified model: trt ∼X1 +X2 +X1 ∗X2

Ï Weight for each unit
Ï For patients in current control group: wi = 1

psi
Ï For patients in historical control group: wi = 1

1−psi

Ï Weighted outcome Yw ,i =Yi ∗wi
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Simulations
Propensity Score and Entropy Balancing

Propensity Score
Ï Weighted mean of Yw in historical control group

ORRhistocontrol−ps =
∑

i∈gp 0 Yw ,i∑
i∈gp 0 wi

Ï Weighted mean of Yw in current control group

ORRcurrentcontrol−ps =
∑

i∈gp 1 Yw ,i∑
i∈gp 1 wi

Entropy Balancing
Ï Weights are created for each patient from current control group
Ï ORRhistocontrol−eb = ORRhistocontrol

Ï ORRcurrentcontrol−eb = weighted mean of Yeb in current control
group
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Simulations
Propensity Score and Entropy Balancing

Differences of interest
diffps =ORRhistocontrol−ps −ORRcurrentcontrol−ps

diffeb =ORRhistocontrol−eb −ORRcurrentcontrol−eb
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Simulations
Comparison - 10 000 simulations - Mis-specified model

Figure: Distributions of difference in ORR between historical and current
control groups, for raw data, propensity score and entropy balancing
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Simulations
Comparison - 10 000 simulations - Specified model

Figure: Distributions of difference in ORR between historical and current
control groups, for raw data, propensity score and entropy balancing
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Simulations
Comparison - 10 000 simulations - Specified model - Different set of parameters

Figure: Distributions of difference in ORR between historical and current
control groups, for raw data, propensity score and entropy balancing
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Conclusion - Advantages and Potential Limita-
tions

Ï For PS weighting and EB, all patients are used rather than only
matched patients as for other PS methods

Ï Weights can be easily integrated to any further statistical analysis
Ï For EB

Ï No balance checking needed
Ï Not sensitive when model is mis-specified
Ï Works with aggregated historical data

Ï For PS
Ï Sensitive to mis-specification of the selection model
Ï Unmatched treated units disregarded
Ï Requires patient-level data for both historical and current studies

Ï For EB: optimization problem with inconsistent balance
constraints or no solution because of limited data

Ï If limited overlap treated/control groups ⇒ control units with very
high weights ⇒ increased variance of the analysis
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Conclusion - Advantages

Key messages
Ï Patient-level data available for historical study and enough

confidence in the specification of the model ⇒ Propensity score
Ï Patient-level data available for historical study but not enough

confidence in the specification of the model ⇒ Entropy balancing
Ï Only aggregated data available for historical study ⇒ Entropy

balancing
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Thank you for your attention !
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Example
Selection Bias

Context
Ï Car company A
Ï Objective: assess the impact of advertisement on new car sales
Ï Two groups of users:

Ï Some users have looked for cars on-line
Ï Other users have not

Ï Group 1 is more likely to be exposed to an ad from A
Ï Group 1 is more likely to buy a car regardless of their exposure

to the ad, because we already know that users are interested in
buying a car due to their on-line research

⇒ Group 1 has a higher baseline likelihood of buying a car
⇒ A comparison of exposed/unexposed groups, without
consideration of this known difference, would produce an overly
optimistic measurement of the effect of the advertisement. (Back)
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Introduction
Quantity of Interest

Back
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Example
Strong ignorability

Ï T : exposure to an advertisement
Ï Y : buy a car from car company A
Ï X , the vector of covariates, should include an indicator for search

for cars on-line
Ï If no such indicator ⇒ violation of strong ignorability assumption

Back
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Propensity Score
Different Methods

Matching
Ï How many matches? 1:1 or

M:1
Ï Replacement allowed or not

Ï Greedy or optimal algorithm?
Ï How close a match is

acceptable?

Stratification
Ï Create strata based on propensity score with a threshold
Ï Compare outcome within each stratum
Ï Control unbalanced sample sizes between strata using weights

Covariate adjustment
Ï The design and the analysis of the study are not separate
Ï Requires the outcome variable
Ï Model: Y ∼T +ps(X )
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Propensity Score
Different Methods - Matching

Ï Goal: create sample of matched treated and control units

How many matches should be chosen?
Ï 1:1 - most common: 1 treated unit matched with 1 control unit

with the closest propensity score
Ï M:1 - full matching:

Ï 1 treated unit matched with M control units or
Ï M treated units matched with 1 control unit

Replacement
Ï With replacement: one control unit can be matched several times
Ï Without replacement: once a control unit has been matched to a

given treated unit, this control unit cannot be matched again with
another treated unit
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Propensity Score
Matching - 1:1
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Propensity Score
Matching - M:1
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Propensity Score
Matching - M:1 with replacement
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Propensity Score
Matching

What type of algorithm should be chosen?
Ï Greedy: a treated unit is selected randomly, then the control unit

whose propensity score is the closest to the treated unit is
chosen as a match; without checking that this control unit might
be better matched to another treated unit

Ï Optimal: matches formed so as to minimize the total within-pair
difference of the propensity score
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Propensity Score
Matching -Greedy
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Propensity Score
Matching - Optimal
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Propensity Score
Matching

How close a match is acceptable?
Ï Nearest neighbor: consider the control unit with the propensity

score closest to the one of the given treated unit
Ï Nearest neighbor in a specified caliper distance: absolute

difference in the propensity scores of matched units must be
below a prespecified threshold; if no control unit appears in this
area, then the given treated unit will not be matched

Ï Radius
Ï Kernel...

Once a matched dataset is obtained, one can directly compare
outcomes between treated and control units
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Propensity Score
Matching - Nearest Neighbor
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Propensity Score
Matching - Nearest Neighbor with a prespecified caliper

Alice Gosselin | Matching Methodologies for Historical Data



43

Propensity Score
Matching - Nearest Neighbor with a prespecified caliper

Back
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Propensity Score
Different Methods - Stratification and Covariate adjustment

Stratification
Ï Create strata based on propensity score with a prespecified

threshold
Ï Example: create 5 strata based on the 5 quintiles of the propensity

score distribution
Ï 1 stratum = 1 matched sample
Ï Compare outcome within each stratum
Ï Control unbalanced sample sizes between strata using weights

(for ATT): 1
# treated units in stratum k

Covariate adjustment
Ï the design and the analysis of the study are not separate
Ï requires the outcome variable
Ï Model: Y ∼T +ps(X )
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Example
Propensity score with stratification on quintiles (Back)
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Simulations
Introduction

Variables (Back)
Ï n.ss: number of patients in historical control group + number of

patients in current control group
Ï X1 and X2: covariates ∼Bin(p1) and ∼Bin(p2)

Ï logit .p = d0 +d1 ∗X1 +d2 ∗X2 +d3 ∗X1 ∗X2

Ï trt: treatment indicator ∼Bin(p3 = exp(logit .p)
1+exp(logit .p) )

Ï logit .p.Y = c0 +c1 ∗X1 +c2 ∗X2 +c3 ∗X1 ∗X2

Ï Y: outcome ∼Bin(p4 = exp(logit .p.Y )
1+exp(logit .p.Y )

)
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Simulations
Introduction - Parameters

n.ss = 4000
p1 = 0.3
p2 = 0.2
d0 =−4
d1 = 2
d2 =−2
d3 = 5
c0 =−2
c1 = 2
c2 = 5
c3 =−3

Back
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Simulations
Propensity Scores

Back
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Simulations
Entropy Balancing

Variables
Ï Framework: for historical patients, we only have aggregated data
Ï Fro patients from current control group: data unchanged
Ï For patients from historical control group:

Ï X1 = mean of X1 calculated previously for propensity score
Ï X2 = mean of X2 calculated previously for propensity score
Ï Y = mean of Y calculated previously for propensity score
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Simulations
Entropy Balancing

Back
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Simulations
Comparison in means of covariates

Mean over all simulations of
mean(Xj in historical control group) - mean(Xj in current control
group)

Ï No misspecification

raw after ps after eb
X1 -0.6254 -0.0127 -0.0004070
X2 -0.3627 0.03388 -0.0001948

Ï Mis-specified model

raw after ps after eb
X1 -0.6267 0.1619 -0.0004234
X2 -0.3630 0.1529 -0.0001939
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