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1 Departamento de Matemática Aplicada e Estat́ıstica, Instituto de Ciências
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Abstract: Nonlinear models have many applications in different areas such as
pharmacokinetics and pharmacodynamics, and random effects are often included
to take into account the correlation between observations taken within the same
subject. In this context, we propose a bayesian analysis for heavy-tailed non-
linear mixed effects models, which may produce more robust estimates for the
parameters in the model.
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1 Introduction

Nonlinear mixed effects models are suitable for different applications such
as longitudinal data or growth curves, specially in pharmacokinetics. In
this work we discuss a bayesian approach for fitting nonlinear mixed effects
models with scale mixture of normal distributions for the random effects
and errors by using a stochastic formulation. The assumption of heavy-
tailed distributions for the random effects and errors enables the model
to produce more robust estimates against outlying or influential observa-
tions (see, for instance, Meza et al., 2011 and Russo et al., 2009). Results
are applied to the theophylline data set, frequently used to exemplify the
absorption and elimination of a substance in the body.

2 The model

It is usual to consider the normal distribution for the random effects and
errors. One alternative to the normality would be, for instance, the scale
mixture of normal (SMN) distributions. Let Y be an m−dimensional ran-
dom vector following a distribution in its stochastic form

Y = µ + κ(U)1/2Z,
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where µ is the location vector, U is a positive random variable with cumu-
lative distribution function (cdf) H(u,ν) and probability density function
(pdf) h(u,ν). Here, ν is a scalar or vector parameter indexing the dis-
tribution of U , κ(U) is the weight function, Z ∼ N(0,Σ) with Z and U
independent. Given U = u, Y follows a multivariate normal distribution
with mean µ and variance-covariance κ(u)Σ. In other words, the SMN dis-
tribution is a scale mixture of normal distributions, where the distribution
of the scale factor U is the mixing distribution. The marginal pdf of Y may
be written as

f(y) =

∫ ∞
0

φm(y|µ, κ(u)Σ)dH(u,ν), (1)

where φm(.|µ,Σ) stands for the probability density function of the m–
variate normal distribution with mean vector µ and covariance matrix
Σ. We will use the notation Y ∼ SMNm(µ,Σ; H). Here, we consider

specifically the cases where U = 1 (normal model), U ∼ Gamma
(ν

2
,
ν

2

)
(Student-t model) and U ∼ Beta(ν, 1) (slash model).

2.1 Nonlinear mixed-effects models with scale mixture of
normal distributions

Suppose that y = (y>1 , . . . ,y
>
n )> is a vector of observed continuous multi-

variate responses with yi a (ni × 1) vector containing the observations for
the experimental unit i, i = 1, . . . , n, such that

yi = g(φi,Xi) + εi, i = 1, . . . , n,
φi = Aiβ + bi,

(2)

in which Xi = (Xi1, . . . ,Xini)
> is a matrix of explanatory variables for the

i-th unit, bi is a (q × 1) vector of random effects, εi is an (ni × 1) vector
of random errors values for i = 1, . . . , n, β is a (p× 1) location vector and
Ai is a full rank (p× p) matrix of known constants. We assume that(

εi
bi

)
ind.∼ SMNni+q

((
0
0

)
,

(
Σi 0
0 D

)
; H

)
, (3)

where D and Σi are positive-definite dispersion matrices. We assume that
D = diag(τ ) is a unstructured matrix and denote its elements by τ =
diag(τ1, τ2, . . . , τq)>. The matrix Σi with dimension (ni × ni) is typically
dependent upon i through its dimension, and it will be considered, for ex-
ample, Σi = σ2Ini for i = 1, . . . , n and σ > 0 a scalar. Since Ai and
Xi are known matrices, we will simplify the notation by writing g(β,bi)
to represent g(φi,Xi) = g(Aiβ + bi,Xi). Finally, H = H(·,ν) is the cdf
generator that determines the specific SMN model that was assumed. Un-
der a bayesian framework, the unobserved quantities are considered as
random variables. The prior distributions considered were βi ∼ N(0, v),
τi ∼ Gamma(ai, bi), σ

2 ∼ Gamma(c, d).
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3 Numerical illustration

Pinheiro & Bates (2000) and Meza et al (2001) analysed the kinetic study of
the agent theophylline. In that experiment, serum concentration (in mg/L)
of theophylline was measured in eleven times (in h) after the administration
of d dose (in mg/kg) in each of twelve patients.
This type of problem involves the absorption and elimination of a sub-
stance on the organism, and it is usual to model the mean theophylline
concentration Y by using the nonlinear function of the time T and dose d
as follows

E(Y ) = d exp(lKa + lKe − lCl)
[exp(−elKeT )− exp(−elKaT )]

elKa − elKe
.

This model incorporate the following interpretations for the parameters:
lKa represents the logarithm of the substance absorption rate, lKe is the
logarithm of the substance elimination rate and lCl represents the loga-
rithm of plasma clearance.
Thus, a nonlinear mixed effects model for the vector of observations yi

would be as in (2) with g(φi,Xi) = g(φi,Ti) = (g(φi, T1i), . . . , g(φi, Tmii))
>

with
φi = (lKe + b1i, lKa + b2i, lCl + b3i)

>

and

g(φi, Tmii) = d exp(φ2i + φ1i − φ3i)
[exp(−eφ1iT )− exp(−eφ2iT )]

eφ2i − eφ1i

.

The Monte Carlo estimates using OpenBUGS were obtained generating
chains of size 50000 spaced by 50. The posterior means and the corre-
sponding standard deviations of the parameters are presented in Table 1
and fitted profiles show a suitable fit.

Normal Student-t4 Slash4

mean (sd) mean (sd) mean (sd)

lKe -2.465 (0.102) -2.452 (0.099) -2.450 (0.099)
lKa 0.462 (0.142) 0.460 (0.146) 0.459 (0.147)
lCl -3.232 (0.095) -3.221 (0.097) -3.220 (0.094)

(σ2)−1 0.636 (0.104) 0.552 (0.145) 0.123 (0.035)
(τ1)−1 5.580 (1.691) 5.053 (1.492) 5.052 (1.505)
(τ2)−1 13.060 (3.458) 13.150 (3.451) 13.210 (3.451)
(τ3)−1 11.830 (3.087) 11.740 (3.082) 11.760 (3.085)

4 Discussion and remarks

Nonlinear mixed effects models plays an important role in nonlinear prob-
lems with correlated data. Considering a stochastic formulation in a bayesian
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FIGURE 1. Fitted curves for theophylline problem under slash4 model.

approach, we propose the use of heavy-tailed distributions in a bayesian
context to provide alternatives to the gaussian model. As a result, the
heavy-tailed models provide more robust estimates for the parameters of
the model.
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do Estado de São Paulo - FAPESP, Brazil, for supporting this research.

References

Meza, C., Osorio, F. and De la Cruz, R. (2011) Estimation in nonlinear mixed-
effects models using heavy-tailed distributions. Statistics and Com-
puting 51, 4354–4368, doi 10.1007/s11222-010-9212-1.

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-Effects Models in S and S-
Plus, Springer, New York.

Russo, C. M., and Paula, G. A. and Aoki, R. (2009). Influence diagnostics
in nonlinear mixed-effects elliptical models. Computational Statistics
& Data Analysis 53, 4143–4156.


