Estimation of Optimally-Combined-Biomarker Accuracy in the Absence of a Gold-Standard Reference Test

L. Garcia Barrado¹ E. Coart² T. Burzykowski^{1,2}

¹Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-Biostat)

²International Drug Development Institute (IDDI)

Outline

Problem setting

Accuracy definition

Optimal combination of biomarkers

Absence of gold-standard reference

Bayesian latent-class mixture model

"Naive" prior definition

Controlled prior definition

Simulation study

Data

Results

Outline

Problem setting

Accuracy definition
Optimal combination of biomarkers
Absence of gold-standard reference

Bayesian latent-class mixture model

"Naive" prior definition Controlled prior definition

Simulation study

Data

Results

Problem setting

Establish accuracy of a combination of biomarkers in the absence of a gold-standard reference test

- Area under the Receiver Operating Characteristics (ROC) curve (AUC) as measure of accuracy
- Choose combination of biomarkers that maximizes AUC
- Imperfect reference test leads to biased estimates of accuracy

=> To this end a Bayesian latent-class mixture model will be proposed

- Problem setting

Accuracy definition

Area under the Receiver Operating Characteristics curve

Data assumptions and notation

Underlying true biomarker distribution

- Mixture of two K-variate normal distributions by true disease status (D)
 - $ightharpoonup ec{oldsymbol{\mathsf{Y}}}|_{\mathit{D}=0} \sim \mathit{N}_{\mathit{K}}(oldsymbol{\mu}_{0},oldsymbol{\Sigma}_{0})$
 - $ightharpoonup |\mathbf{Y}|_{D=1} \sim N_K(oldsymbol{\mu}_1, oldsymbol{\Sigma}_1)$
- Se: Unknown sensitivity of the reference test (T)
- Sp: Unknown specificity of the reference test (T)
- \triangleright θ : Unknown true prevalence of disease in the data set
- Reference test is imperfect
 - Conditionally on true disease status, misclassification independent of biomarker value
 - Ignoring will UNDERESTIMATE performance of biomarker

ROC parameters optimal combination of biomarkers

According to Siu and Liu (1993) the linear combination maximizing AUC is of the form:

$$egin{aligned} \mathbf{a'Y}|_{D=0} &\sim \mathit{N}(\mathbf{a'}oldsymbol{\mu_0},\mathbf{a'}oldsymbol{\Sigma_0}\mathbf{a}) \ \mathbf{a'Y}|_{D=1} &\sim \mathit{N}(\mathbf{a'}oldsymbol{\mu_1},\mathbf{a'}oldsymbol{\Sigma_1}\mathbf{a}) \end{aligned}$$

For which:

$$\mathbf{a}^{\prime} \propto (\mathbf{\Sigma}_0 + \mathbf{\Sigma}_1)^{-1} (\mathbf{\mu}_1 - \mathbf{\mu}_0)$$

Area Under the ROC Curve:

$$extit{AUC}_{OplComb} = \Phi \left\{ \left((oldsymbol{\mu}_1 - oldsymbol{\mu}_0)' (oldsymbol{\Sigma}_0 + oldsymbol{\Sigma}_1)^{-1} (oldsymbol{\mu}_1 - oldsymbol{\mu}_0)
ight)^{rac{1}{2}}
ight\}$$

This is all under the assumption of a gold standard reference test. We propose to extend this to the imperfect reference test case.

ROC parameters optimal combination of biomarkers

According to Siu and Liu (1993) the linear combination maximizing AUC is of the form:

$$\mathbf{a'Y}|_{D=0} \sim \mathcal{N}(\mathbf{a'}\mu_0,\mathbf{a'}\mathbf{\Sigma_0}\mathbf{a})$$

 $\mathbf{a'Y}|_{D=1} \sim \mathcal{N}(\mathbf{a'}\mu_1,\mathbf{a'}\mathbf{\Sigma_1}\mathbf{a})$

For which:

$$\mathbf{a'} \propto (\mathbf{\Sigma}_0 + \mathbf{\Sigma}_1)^{-1} (\mathbf{\mu}_1 - \mathbf{\mu}_0)$$

Area Under the ROC Curve:

$$extit{AUC}_{OptComb} = \Phi \left\{ ((oldsymbol{\mu}_1 - oldsymbol{\mu}_0)'(oldsymbol{\Sigma}_0 + oldsymbol{\Sigma}_1)^{-1}(oldsymbol{\mu}_1 - oldsymbol{\mu}_0))^{rac{1}{2}}
ight\}$$

This is all under the assumption of a gold standard reference test. We propose to extend this to the imperfect reference test case.

Underlying versus observed data

Ignoring misclassification in imperfect reference test will lead to bias of estimated accuracy:

True distributions VS observed data

- In example: conditionally independent misclassification
- Misclassification in reference test causes skewed observed distributions
- Goal: retrieve accuracy of true underlying biomarker by observed data

- Bayesian latent-class mixture model

Outline

Problem setting

Accuracy definition

Optimal combination of biomarkers

Absence of gold-standard reference

Bayesian latent-class mixture model

"Naive" prior definition Controlled prior definition

Simulation study

Data

Results

Bayesian latent-class mixture model

Full data likelihood

$$\begin{split} &L(\boldsymbol{\mu}_{0}, \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{0}, \boldsymbol{\Sigma}_{1}, \boldsymbol{\theta}, Se, Sp|\mathbf{Y}, \mathbf{T}, \mathbf{D}) \\ &= \prod_{i=1}^{N} \left(\boldsymbol{\theta} Se^{l_{i}} (1 - Se)^{(1-l_{i})} \frac{1}{\sqrt{2\pi|\boldsymbol{\Sigma}_{1}|}} \times EXP\left\{ -\frac{1}{2} \left(\mathbf{Y}_{i} - \boldsymbol{\mu}_{1}\right)' \boldsymbol{\Sigma}_{1}^{-1} \left(\mathbf{Y}_{i} - \boldsymbol{\mu}_{1}\right) \right\} \right)^{d_{i}} \\ &\times \left((1 - \boldsymbol{\theta})(1 - Sp)^{l_{i}} Sp^{(1-l_{i})} \frac{1}{\sqrt{2\pi|\boldsymbol{\Sigma}_{0}|}} \times EXP\left\{ -\frac{1}{2} \left(\mathbf{Y}_{i} - \boldsymbol{\mu}_{0}\right)' \boldsymbol{\Sigma}_{0}^{-1} \left(\mathbf{Y}_{i} - \boldsymbol{\mu}_{0}\right) \right\} \right)^{(1-d_{i})} \end{split}$$

```
- Bavesian latent-class mixture model
```

"Naive" prior definition

"Naive" prior definition

Hyperprior

 $\theta \sim \text{Uniform}(0.1,0.9)$

Priors

```
\begin{array}{ll} D_i \sim \mathsf{Bernoulli}(\theta) & (\mathsf{Observation} \ i: \ 1, \dots, \mathsf{N}) \\ \mu_{kj} \sim \mathsf{N}(0, 10^6) & (\mathsf{Disease} \ \mathsf{indicator} \ j: \ 0, \ 1; \ \mathsf{Biomarker} \ k: \ 1, \dots, \mathsf{K}) \\ \boldsymbol{\Sigma}_j^{-1} \sim \mathsf{Wish}(\boldsymbol{S}, \mathsf{K}) & (\mathsf{Disease} \ \mathsf{indicator} \ j: \ 0, \ 1) \\ & \quad \mathsf{with} \ \boldsymbol{S} = \mathsf{VarCov\text{-}matrix} \ \mathsf{of} \ \mathsf{observed} \ \mathsf{control} \ \mathsf{group} \\ \mathsf{Se} = \mathsf{Sp} \sim \mathsf{Beta}(1, 1)\mathsf{T}(0.51, \infty) & [\mathsf{Non\text{-}informative}] \\ \mathsf{OR} \ \mathsf{Se} = \mathsf{Sp} \sim \mathsf{Beta}(10, 1.764706)\mathsf{T}(0.51, \infty) & [\mathsf{Informative}] \\ \end{array}
```

- Bayesian latent-class mixture model

"Naive" prior definition

Se/Sp Beta(10,1.764706) Prior

Mean = 0.85

Var = 0.009988479

Equal-tail 95%-probability interval: 0.6078 - 0.9834

- Bayesian latent-class mixture model

"Naive" prior definition

Implied priors

Variances and correlations

"Naive" prior definition

Implied priors

AUC

- Prior specification is used commonly (e.g. O'Malley and Zou (2006))
- Uninformative mixture component priors lead to prior point mass distribution centred at 1 for AUC
- Extremely informative prior for component of interest!

Controlled prior definition (Σ)

Set
$$\Sigma_j = \mathbf{V}_j \mathbf{R}_j \mathbf{V}_j^*$$

For: $\mathbf{V}_j = \sigma_{k,j} I_K$ and \mathbf{R}_j is a correlation matrix. [j:0,1; k:1,...,K]
Then: $\mathbf{C}_j = \text{Cholesky factor of } \mathbf{R}_j$.

$$\sigma_{k,j} \sim \mathsf{Uniform}(\mathsf{0,1000})$$

Say K=3 then:

$$C_{j,12} = \rho_{j,12} \sim \text{Uniform(-1,1)}$$
 $C_{j,13} = \rho_{j,13} \sim \text{Uniform(-1,1)}$
 $C_{j,23} \sim \text{Uniform}\left(-\sqrt{1-\rho_{j,13}^2}, \sqrt{1-\rho_{j,13}^2}\right)$
 $\rho_{j,23} = \rho_{j,12}\rho_{j,13} + C_{j,22}C_{j,23}$

* Wei, Y and Higgins, J.P.T (2013)

Controlled prior definition

Controlled prior definition (AUC)

Set
$$oldsymbol{\Delta} = \mathbf{L}(\mu_1 - \mu_0)$$

For $oldsymbol{\mathsf{L}} =$ the Cholesky factor of $(oldsymbol{\Sigma}_0 + oldsymbol{\Sigma}_1)^{-1}$

$$egin{aligned} oldsymbol{\Delta} &\sim \textit{N}_{\textit{K}}(\kappa, \Psi) \ \mu_{0\textit{k}} &\sim \textit{N}(0, 10^6) \ (\text{k: 1,...,K}) \ oldsymbol{\mu}_1 &= oldsymbol{\Delta} L^{-1} + \mu_{oldsymbol{0}} \end{aligned}$$

- Bayesian latent-class mixture model

Controlled prior definition

Implied priors

Variances and correlations

Histogram component22

Controlled prior definition

Implied priors

AUC

For
$$\kappa = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
, $\sigma_i = 0.7$ and $\rho_{ij} = 0.6$ [i,j: 1,...,K]

- Less informative prior distribution for AUC
- Prior on Δ gives control over informativeness AUC prior

Outline

Problem setting

Accuracy definition

Optimal combination of biomarkers

Absence of gold-standard reference

Bayesian latent-class mixture model

'Naive" prior definition

Simulation study

Data

Results

└ Data

400 datasets for 3 independent biomarkers

$$N = 100, 400 \text{ or } 600$$

$$\theta = 0.5$$

$$Se = Sp = 0.85$$

Mixture component parameters set such that:

AUC of biomarker
$$1 = 0.75$$

AUC of biomarker
$$2 = 0.75$$

AUC of biomarker
$$3 = 0.75$$

Simulation study

AUC Results (Average of median posterior AUC)

True AUC = 0.8786

		Sample Size		
Prior Formulation	Se/Sp Prior	N=100	N=400	N=600
GS	1	0.7710 (0.0361)	0.7661 (0.0210)	0.7614 (0.0157)

- Gold Standard model fit leads to severe underestimation
- Naive AUC prior specification causes slight overestimation
 - Increased sample size reduces overestimation and decreases standard errors
 - Informative Se/Sp prior also reduces this bias, but seems to increase standard errors
- Controlled AUC prior reduces overestimation compared to Naive-prior case
 - Increased sample size decreases standard errors
 - Informative Se/Sp prior no substantial effect

- Simulation study

Results

AUC Results (Average of median posterior AUC)

True AUC = 0.8786

		Sample Size		
Prior Formulation	Se/Sp Prior	N=100	N=400	N=600
GS	/	0.7710 (0.0361)	0.7661 (0.0210)	0.7614 (0.0157)
Naive	Non-Inf	0.9241 (0.0279)	0.8890 (0.0279)	0.8836 (0.0262)
Naive	Inf	0.9068 (0.0344)	0.8827 (0.0286)	0.8785 (0.0263)

- Gold Standard model fit leads to severe underestimation
- Naive AUC prior specification causes slight overestimation
 - Increased sample size reduces overestimation and decreases standard errors
 - Informative Se/Sp prior also reduces this bias, but seems to increase standard errors
- Controlled AUC prior reduces overestimation compared to Naive-prior case
 - Increased sample size decreases standard errors
 - ► Informative Se/Sp prior no substantial effect

AUC Results (Average of median posterior AUC)

True AUC = 0.8786

		Sample Size		
Prior Formulation	Se/Sp Prior	N=100	N=400	N=600
GS	/	0.7710 (0.0361)	0.7661 (0.0210)	0.7614 (0.0157)
Naive	Non-Inf	0.9241 (0.0279)	0.8890 (0.0279)	0.8836 (0.0262)
Naive	Inf	0.9068 (0.0344)	0.8827 (0.0286)	0.8785 (0.0263)
Controlled	Non-Inf	0.8907 (0.0347)	0.8803 (0.0290)	0.8773 (0.0271)
Controlled	Inf	0.8728 (0.0388)	0.8741 (0.0292)	0.8722 (0.0269)

- Gold Standard model fit leads to severe underestimation
- Naive AUC prior specification causes slight overestimation
 - Increased sample size reduces overestimation and decreases standard errors
 - Informative Se/Sp prior also reduces this bias, but seems to increase standard errors
- Controlled AUC prior reduces overestimation compared to Naive-prior case
 - Increased sample size decreases standard errors
 - ► Informative Se/Sp prior no substantial effect

Conclusions

Outline

Problem setting

Accuracy definition

Optimal combination of biomarkers

Absence of gold-standard reference

Bayesian latent-class mixture model

"Naive" prior definition

Controlled prior definition

Simulation study

Data

Results

- Bayesian latent-class mixture model:
 - Takes unknown true disease status into account
 - Incorporates information from reference test while acknowledges imperfectness
 - Provides estimates of accuracy of the reference test
- Simulation study
 - Model is able to retrieve true AUC
- Careful prior specification
 - Complex function of uninformative prior distributions => informative prior => biased estimates
 - Controlled prior specification is proposed

Further considerations

- Sensitivity to misspecified Se/Sp prior distribution
- Extend to incorporate non-normally distributed biomarkers
- Evaluate impact of conditional independence assumption

References

- O'Malley, A.J., Zou, K.H.: Bayesian multivariate hierarchical transformation models for ROC analysis. Statistical Medicine. 25, 459–479 (2006)
- Su, J.Q., Liu, J.S.: Linear combinations of multiple diagnostic markers.
 Journal of the American Statistical Association. 88, 1350–1355 (1993)
- Wei, Y, Higgins, P.T.: Bayesian multivariate meta-analysis with multiple outcomes. Statistics in Medicine (2013) doi: 10.1002/sim.5745

Thank you for your attention!