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L Problem setting

Problem setting

Establish accuracy of a combination of biomarkers in the
absence of a gold-standard reference test

» Area under the Receiver Operating Characteristics (ROC) curve
(AUC) as measure of accuracy

» Choose combination of biomarkers that maximizes AUC

» Imperfect reference test leads to biased estimates of accuracy

=> To this end a Bayesian latent-class mixture model will be
proposed
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L Problem setting

LAccuracy definition

Area under the Receiver Operating Characteristics curve

Classification example Classification example ROC curve
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LOptimal combination of biomarkers

Data assumptions and notation

Underlying true biomarker distribution

» Mixture of two K-variate normal distributions by true disease
status (D)

> Y[p=o ~ Nk(kg, Xo)
> Y|p=1 ~ Nk(py, 1)

Se: Unknown sensitivity of the reference test (T)

v

v

Sp: Unknown specificity of the reference test (T)

v

#: Unknown true prevalence of disease in the data set
Reference test is imperfect

» Conditionally on true disease status, misclassification
independent of biomarker value
» Ignoring will UNDERESTIMATE performance of biomarker
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Estimation of Optimally-Combined-Biomarker Accuracy in the Absence of a Gold-Standard Reference Test
LOptimal combination of biomarkers

ROC parameters optimal combination of biomarkers

According to Siu and Liu (1993) the linear combination maximizing AUC is of the form:
For which:

a’Y|D:o ~ N(a’ﬂo,a’Zoa)
a’Y|D:1 ~ N(a’m,a’&a)

a o (Zo+ 1) (1 — Ho)
Area Under the ROC Curve:

AUCocom = & { (1 — p10) (Zo + 1)~ (a1 — b))

S
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L Problem setting

LOptimal combination of biomarkers

ROC parameters optimal combination of biomarkers

According to Siu and Liu (1993) the linear combination maximizing AUC is of the form:

a’Y|D:o ~ N(a’uo,a’Zoa)
a’Y|D:1 ~ N(a’u1,a’Z1a)

For which:
a o (To+ 1) (1 — po)

Area Under the ROC Curve:

AUCopicom> = P {((IM — o) (Zo + X1) 7 (11 — o))

ol=

j

This is all under the assumption of a gold standard reference test. We
propose to extend this to the imperfect reference test case.
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Estimation of Optimally-Combined-Biomarker Accuracy in the Absence of a Gold-Standard Reference Test
LAbsence of gold-standard reference

Underlying versus observed data

Ignoring misclassification in imperfect reference test will lead to
bias of estimated accuracy:
True distributions VS observed data

> In example: conditionally

independent misclassification
» Misclassification in reference

test causes skewed observed
distributions

» Goal: retrieve accuracy of
i T
Biomarker value

true underlying biomarker by
observed data
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LBayesmn latent-class mixture model

Estimation of Optimally-Combined-Biomarker Accuracy in the Absence of a Gold-Standard Reference Test

Full data likelihood

L( gt 41, Xo, 1,0, Se, Sp|Y, T, D)
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L”Naive” prior definition

"Naive” prior definition

Hyperprior
6 ~ Uniform(0.1,0.9)

Priors

D; ~ Bernoulli(#) (Observation i: 1,...,N)

g ~ N(0,106) (Disease indicator j: 0, 1; Biomarker k: 1,. . .,K)

X! ~ Wish(SK) (Disease indicator j: 0, 1)
with 8 = VarCov-matrix of observed control group

Se = Sp ~ Beta(1,1)T(0.51,00) [Non-informative]
OR Se = Sp ~ Beta(10,1.764706)T(0.51,00) [Informative]
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LBayesian latent-class mixture model

L "Naive” prior definition

Se/Sp Beta(10,1.764706) Prior
Mean = 0.85
Var = 0.009988479
Equal-tail 95%-probability interval: 0.6078 - 0.9834

Informative Se/Sp prior

Density
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LBayesian latent-class mixture model

L”Naive” prior definition

Implied priors

Variances and correlations
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LBayesian latent-class mixture model

L”Naive” prior definition

Implied priors

AUC

Implied AUC prior

» Prior specification is used
commonly (e.g. O’'Malley
and Zou (2006))

» Uninformative mixture
component priors lead to
prior point mass distribution
centred at 1 for AUC

» Extremely informative prior
for component of interest!
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LBayesian latent-class mixture model

LControlled prior definition

Controlled prior definition (X)
Set Zj :V/RjVj*

For: V; = oy jlx and R; is a correlation matrix. [j:0,1; k:1,...,K]
Then: C; = Cholesky factor of R;.

ok,j ~ Uniform(0,1000)
Say K=3 then:

Cj.12 = pj,12 ~ Uniform(-1,1)
C/‘713 = pj,13 ~ Uniform(-1,1)

Cios ~ Uniform(—\/1 — Pra/1— )

pj23 = pj.12pj,13 + Cj22Cj 23

* Wei, Y and Higgins, J.P.T (2013)
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LBayesian latent-class mixture model

Estimation of Optimally-Combined-Biomarker Accuracy in the Absence of a Gold-Standard Reference Test
LControlled prior definition

Controlled prior definition (AUC)

Set A = L(p1 — o)

For L = the Cholesky factor of (Xq + X1) ™

A~ NK(K,, \U)
pok ~ N(0,10%) (k: 1,
p=ADLT + po

- K)
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LBayesian latent-class mixture model

LControlled prior definition

Implied priors

Variances and correlations
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LBayesian latent-class mixture model

LControlled prior definition

Implied priors
AUC
0

Fork=|0],0/=07andp; =06  [iji 1....K]
0
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LSimuIation study
L Data

400 datasets for 3 independent biomarkers

N = 100, 400 or 600
# =05
Se=Sp=0.85

Mixture component parameters set such that:

AUC of biomarker 1 = 0.75
AUC of biomarker 2 = 0.75
AUC of biomarker 3 =0.75

AU COptimaICombination =0.88
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LSimuIalion study

Estimation of Optimally-Combined-Biomarker Accuracy in the Absence of a Gold-Standard Reference Test
L Results

Prior

Formulation Se/Sp Prior
GS

AUC Results (Average of median posterior AUC)
True AUC = 0.8786

Sample Size
N=100
/

N=400

N=600
0.7710 (0.0361) 0.7661 (0.0210) 0.7614 (0.0157)

» Gold Standard model fit leads to severe underestimation

D¢
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LSimulatinn study
L Results
;

AUC Results (Average of median posterior AUC)
True AUC = 0.8786

Sample Size
Prior  se/spPrior  N=100 N=400 N=600
Formulation
GS / 0.7710 (0.0361) 0.7661 (0.0210) 0.7614 (0.0157)
Naive Non-Inf  0.9241 (0.0279) 0.8890 (0.0279) 0.8836 (0.0262)
Naive Inf 0.9068 (0.0344) 0.8827 (0.0286) 0.8785 (0.0263)

» Gold Standard model fit leads to severe underestimation

» Naive AUC prior specification causes slight overestimation
> Increased sample size reduces overestimation and decreases standard errors
> Informative Se/Sp prior also reduces this bias, but seems to increase standard

errors
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LSimulaticm study
L Results

AUC Results (Average of median posterior AUC)
True AUC = 0.8786

Sample Size
Prior  ge/spPrior  N=100 N=400 N=600

Formulation

GS / 0.7710 (0.0361) 0.7661 (0.0210) 0.7614 (0.0157)
Naive Non-Inf  0.9241 (0.0279) 0.8890 (0.0279) 0.8836 (0.0262)
Naive Inf 0.9068 (0.0344) 0.8827 (0.0286) 0.8785 (0.0263)
Controlled Non-Inf  0.8907 (0.0347) 0.8803 (0.0290) 0.8773 (0.0271)
Controlled Inf 0.8728 (0.0388) 0.8741 (0.0292) 0.8722 (0.0269)

» Gold Standard model fit leads to severe underestimation

» Naive AUC prior specification causes slight overestimation
> Increased sample size reduces overestimation and decreases standard errors
> Informative Se/Sp prior also reduces this bias, but seems to increase standard
errors

» Controlled AUC prior reduces overestimation compared to Naive-prior case

> Increased sample size decreases standard errors
» Informative Se/Sp prior no substantial effect
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LConclusions

Conclusions

» Bayesian latent-class mixture model:

» Takes unknown true disease status into account
» Incorporates information from reference test while acknowledges
imperfectness

> Provides estimates of accuracy of the reference test

» Simulation study
» Model is able to retrieve true AUC

» Careful prior specification

» Complex function of uninformative prior distributions =>
informative prior => biased estimates
» Controlled prior specification is proposed
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Further considerations

» Sensitivity to misspecified Se/Sp prior distribution

» Extend to incorporate non-normally distributed biomarkers
» Evaluate impact of conditional independence assumption
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Thank you for your attention !
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