Hierarchical Bayesian Overdispersion Models for Non-Gaussian Repeated Measurement Data

Aregay Mehreteab

I-BioStat, KULeuven, Belgium

Bayes2013 May 23, 2013

Outline

Introduction Statistical Methodology Application to Data Simulation Study Concluding Remarks Further Research

Outline

- introduction
- modeling issues
- application to data
- simulation study
- concluding remarks and further research

臣

Motivating Data Sets

A Clinical Trial of Epileptic Seizures

- a double-blind, parallel group multi-center study
- 59 patients were randomized to either antiepileptic drug progabide or to placebo
- follow-up over four successive two week periods
- the number of seizures experienced during the last week
- **Objective**: Reduction in the number of seizures by the treatment

Motivating Data Sets

A Case Study in Onychomycosis

- treatment of toenail dermatophyte onychomycosis (TDO) over 12 weeks
- a randomized, double-blind, parallel group, multi-center study
- two oral treatments (in what follows represented as A and B) were compared
- outcomes were recorded from baseline onwards up to 48 weeks
- sample to 146 and 148 subjects for groups A and B, respectively
- severity of infection
- percentage of severe infection decreases

Motivating Data Sets

HIV Study

- concerned with diagnostic tests
- information about the prevalence of HIV infection in injecting drug users (IDUs)
- study took place in the 20 Italian regions, in the time frame 1998–2006
- reported by the European Monitoring Center for Drugs and Drug Addiction
- for an elaborate discussion, we refer to Del Fava et al. (2011)

Motivating Data Sets

Recurrent Asthma Attacks in Children

- a new application anti-allergic drug was given to children who are at a higher risk to develop asthma
- the children were randomly assigned to either drug or placebo
- time between the end of the previous event (asthma attack) and the start of the next event
- the different events are clustered within a subject and ordered over time
- for detail see Duchateau and Janssen (2007) and Molenberghs *et al.* (2010)

Motivating Data Sets

Kidney Data Set

- the data were studied in McGilchrist and Aisbett (1991)
- response: time to first and second recurrence of infection, at the point of insertion of catheters
- observation is censored when catheters are removed, other than for reasons of infection
- 38 kidney patients in the study and each subject contributes two observations

Motivating Data Sets

Objectives

- to generalize the additive model to the exponential family
- compare the additive to the multiplicative combined model
- impact of misspecification of the GLM and GLMM for hierarchical and overdispersed data

Multiplicative Overdispersion Model Additive Overdispersion Model

Poisson Multiplicative Model for the Epilepsy Data Set

- accommodates both overdispersion and clustering simultaneously
- Y_{ij}: number of epileptic seizures experienced for patient *i* during week *j*
- Likelihood:
- $Y_{ij}|b_i, \theta_{ij} \sim \text{Poisson}(\theta_{ij}\kappa_{ij}),$ $\log(\kappa_{ij}) = \beta_0 + \beta_{\text{Base}} \cdot \text{Ibase}_i + \beta_{\text{Age}} \cdot \text{Iage}_i + \beta_{\text{Trt}} \cdot T_i + \beta_{V_4} \cdot V_{4j} + \beta_{BT} \cdot T_i \cdot \text{Ibase}_i + b_i$

Multiplicative Overdispersion Model Additive Overdispersion Model

Multiplicative Model: Bayesian Formulation

- Prior and hyper-priors:
 - an independent diffuse normal priors $\beta \sim N(0; 100000)$
 - $\theta_{ij} \sim \text{Gamma}(\alpha, \beta)$
 - $\beta = \alpha$
 - a uniform prior distribution U(0,100) was considered for lpha
 - $b_i \sim N(0, \sigma_b^2); \ \sigma_b^{-2} \sim G(0.01, 0.01)$
- to improve convergence, all of the covariates, were centered about their mean (Breslow and Clayton 1993 and Thall and Vail 1990)

Multiplicative Overdispersion Model Additive Overdispersion Model

Bernoulli Multiplicative Model for the Onychomycosis Study

- Y_{ij} be the *j*th binary response for subject *i* coded as 1 for severe infection and 0 otherwise
- Likelihood:
- $Y_{ij}|b_i, \theta_{ij} \sim \text{Bernoulli}(\pi_{ij} = \theta_{ij}\kappa_{ij}),$ $\text{logit}(\kappa_{ij}) = \beta_1 T_i + \beta_2 (1 - T_i) + \beta_3 T_i t_{ij} + \beta_4 (1 - T_i) t_{ij} + b_i,$
- $\theta_{ij} \sim \text{Beta}(\alpha, \beta), \ b_i \sim N(0, \sigma_b^2)$
- $\alpha \sim U(0, 100)$ and $\beta \sim U(0, 100)$

Multiplicative Overdispersion Model Additive Overdispersion Model

Binomial Multiplicative Model for the HIV Study

Likelihood:

- $Y_{ij}|b_i, \theta_{ij} \sim \text{Binomial}(\pi_{ij} = \theta_{ij}\kappa_{ij}, m_{ij}),$ $\text{logit}(\kappa_{ij}) = \beta_j + b_i$
- Y_{ij} is the event for subject i at time j,
- π_{ij} is the prevalence and m_{ij} is the number of trials
- $\theta_{ij} \sim \text{Beta}(\alpha, \beta), \ b_i \sim N(\beta_0, \sigma_b^2)$
- $\alpha \sim U(1, 100)$ and $\beta = \alpha$

Multiplicative Overdispersion Model Additive Overdispersion Model

Weibull Multiplicative Model for the Asthma and Kidney Data

- Y_{ij} is the time at risk for a particular asthma attack
- Likelihood:
- $Y_{ij}|b_i, \theta_{ij} \sim \text{Weibull}(r, \theta_{ij}\kappa_{ij}),$ $\log(\kappa_{ij}) = \beta_0 + \beta_1 T_i + b_i$
- Kidney data set:
 - Y_{ij} is the time to first and second recurrence of infection in kidney patients on dialysis
 - $Y_{ij}|b_i, \theta_{ij} \sim \text{Weibull}(r, \theta_{ij}\kappa_{ij}), \\ \log(\kappa_{ij}) = \beta_0 + \beta_1 \cdot \operatorname{age}_{ij} + \beta_2 \cdot \operatorname{sex}_i + \beta_3 \cdot D_{i1} + \beta_4 \cdot D_{i2} + \beta_5 \cdot D_{i3} + b_i$
 - we used a truncated Weibull for censored observations and r = 1

Multiplicative Overdispersion Model Additive Overdispersion Model

Additive Model

- Why:
 - failure to converge and computationally expensive for multiplicative model
 - to expand the modeler's toolkit, and for quality of fit
- the general family is the same as in the multiplicative, except that the mean now is:
- $\eta_{ij} = h(\mu_{ij}^a) = h[E(Y_{ij}|\boldsymbol{b}_i,\beta)] = \mathbf{x}_{ij}'\beta + \mathbf{z}_{ij}'\mathbf{b}_i + \theta_{ij}$
- the difference is on the specification of the overdispersion random effect θ_{ij}
- $heta_{ij} \sim \textit{N}(0, \sigma_{ heta}^2)$ and $\sigma_{ heta}^{-2} \sim \textit{G}(0.01, 0.01)$
- more generally in terms of assuming a normal distribution for θ_{ij} throughout the exponential family

Multiplicative Overdispersion Model Additive Overdispersion Model

Multiplicative Vs Additive Models

- both additive and multiplicative models allow two separate random effects
- the first one captures subject heterogeneity and a certain amount of overdispersion
- the second one is for the remaining extra-model-variability
- Binary and Binomial Data:
 - the multiplicative effect cannot be absorbed into the linear predictor
 - because the logit and probit links do not allow for this

Multiplicative Overdispersion Model Additive Overdispersion Model

Multiplicative Vs Additive Models

• For time-to-event and count data:

- the link function is logarithmic
- the multiplicative effect could also be absorbed into the linear predictor
- affects the intercept but not the other parameters
- the transformed gamma effect is reasonably symmetric
- the difference between the multiplicative and additive models may be relatively small

Multiplicative Overdispersion Model Additive Overdispersion Model

Model fitting

- Bayesian approach using MCMC through R2WinBUGS package
- three chains of 100,000 iterations, a 10,000 burn-in period, and 100 thinning
- \bullet convergence was checked using trace plots and estimated potential scale reduction factors, \widehat{R}
- Model selection: Deviance Information Criteria (DIC)

Epilepsy Data: Posterior Summary Statistics

	GLM		Multiplicative w/o b _i		Additive w/o b _i		GLMM		Multiplicative with b _i		Additive with b _i	
Par.	Mean	Cred. I.	Mean	Cred. I.	Mean	Cred. I.	Mean	Cred. I.	Mean	Cred. I.	Mean	Cred. I.
β_0	-2.73	(-3.52, -1.91)	-1.50	(-3.10,0.11)	-1.78	(-3.37,-0.18)	-1.31	(-3.73,1.17)	-1.42	(-3.84,0.99)	-1.28	(-3.73,1.22)
β_{Base}	0.95	(0.87,1.03)	0.90	(0.74, 1.08)	0.91	(0.74, 1.00)	0.88	(0.59,1.15)	0.88	(0.60, 1.17)	0.88	(0.62, 1.16)
β_{Age}	0.89	(0.66, 1.11)	0.55	(0.07,1.04)	0.58	(0.12,1.05)	0.48	(-0.25,1.19)	0.49	(-0.22,1.19)	0.47	(-0.26, 1.18)
β_{Trt}	-1.34	(-1.64,-1.04)	-0.91	(-1.47,-0.38)	-0.97	(-1.52,-0.41)	-0.95	(-1.79,-0.17)	-0.94	(-1.77,-0.10)	-0.93	(-1.80,-0.09)
β_{V_4}	-0.16	(-0.27,-0.05)	-0.14	(-0.36,0.08)	-0.09	(-0.32,0.14)	-0.16	(-0.27,0.05)	-0.10	(-0.28,0.07)	-0.12	(-0.28, 0.05)
β_{BT}	0.56	(0.44,0.69)	0.35	(0.09,0.62)	0.37	(0.10,0.65)	0.35	(-0.06,0.79)	0.34	(-0.10,0.77)	0.34	(-0.09,0.77)
σ_b							0.54	(0.43,0.68)	0.50	(0.37,0.65)	0.51	(0.38,0.65)
σ_{θ}					0.60	(0.51,0.69)					0.36	(0.29,0.45)
α			2.75	(2.04,3.63)					8.10	(4.95,13.37)		
DIC		1646.98		1168.11	1	.181.17	1	1271.62		1152.91	1	.157.29

• in all models, the treatment is found to be significant

イロン イヨン イヨン イヨン

э

Onychomycosis Data: Posterior Summary Statistics

	GLM		Multiplicative w/o b _i		Additive w/o b _i		GLMM		Multiplicative with b _i		Additive with b _i	
Par.	Mean	Cred. I.	Mean	Cred. I.	Mean	Cred. I.	Mean	Cred. I.	Mean	Cred. I.	Mean	Cred. I.
β_1	-0.53	(-0.75,-0.31)	-0.42	(-0.64,-0.19)	-0.60	(-0.94,-0.34)	-1.80	(-2.74,-0.93)	-1.80	(-2.92,-0.83)	-1.83	(-2.85,-0.94)
β_2	-0.56	(-0.77,-0.34)	-0.44	(-0.67,-0.21)	-0.62	(-0.96,-0.36)	-1.66	(-2.58,-0.83)	-1.64	(-2.77,-0.59)	-1.71	(-2.70,-0.85)
β_3	-0.26	(-0.32,-0.20)	-0.26	(-0.33,-0.20)	-0.27	(-0.36,-0.20)	-0.57	(-0.70,-0.46)	-0.74	(-1.05,-0.51)	-0.58	(-0.71,-0.47)
β_4	-0.18	(-0.23,-0.13)	-0.18	(-0.23,-0.13)	-0.19	(-0.26,-0.14)	-0.41	(-0.51,-0.32)	-0.45	(-0.57,-0.35)	-0.42	(-0.52,-0.33)
σ_b							4.14	(3.41, 5.00)	4.93	(3.80,6.40)	4.21	(3.49,5.06)
σ_{θ}					0.56	(0.08, 1.80)					0.26	(0.07,0.63)
α/β			13.55	(9.81,19.27)					17.53	(12.27,23.85)		
β	0.56	(0.44,0.69)	0.35	(0.09,0.62)	0.37	(0.10,0.65)	0.35	(-0.06,0.79)	0.34	(-0.09,0.77)	0.34	(-0.10, 0.77)
DIC	DIC 1819.69		1819.89		1831.79		955.524		947.57			953.60

- the DIC values for the GLMM, multiplicative and additive models with clustering random effects models are similar
- in all models, the evolution of the treatment and placebo group over time was significant

HIV Data: Posterior Summary Statistics

	GLM		Multiplicative w/o b _i		Additive w/o b _i		GLMM		Multiplicative with b _i		Additive with b _i	
Par.	Mean	Cred. I.	Mean	Cred. I.	Mean	Cred. I.	Mean	Cred. I.	Mean	Cred. I.	Mean	Cred. I.
β_0	-1.83	(-1.85,-1.81)	0.30	(0.09,0.66)	-1.98	(-2.37,-1.58)	-2.13	(-2.44,-1.82)	-1.09	(-1.59,-0.60)	-2.03	(-2.47,-1.62)
β_1	0.17	(0.14,0.19)	-1.16	(-1.55,-0.85)	-0.15	(-0.74,0.41)	0.02	(-0.01,0.05)	-0.06	(-0.26,0.13)	-0.10	(-0.26,0.06)
β_2	0.11	(0.84,0.14)	-1.21	(-1.59,-0.90)	-0.18	(-0.06,0.01)	-0.03	(-0.06,0.01)	-0.09	(-0.29,0.10)	-0.15	(-0.31,0.02)
β_3	0.15	(0.12,0.18)	-0.95	(-1.35,-0.64)	-0.11	(-0.68,0.42)	0.043	(0.01,0.07)	-0.11	(-0.31,0.83)	-0.09	(-0.26,0.08)
β_4	0.08	(0.05,0.11)	-0.89	(-1.29,-0.57)	-0.10	(-0.67,0.45)	-0.01	(-0.04,0.03)	-0.11	(-0.31,0.08)	-0.10	(-0.26,0.06)
β_5	0.072	(0.04,0.10)	-0.96	(-1.36,-0.65)	-0.17	(-0.71,0.35)	-0.01	(-0.04,0.02)	-0.21	(-0.41,-0.03)	-0.15	(-0.32,0.01)
β_6	0.03	(-0.01,0.06)	-0.97	(-1.37,-0.65)	-0.19	(-0.76,0.37)	-0.04	(-0.07,-0.01)	-0.23	(-0.44,-0.04)	-0.17	(-0.33,-0.01)
β_7	-0.01	(-0.03,0.03)	-0.88	(-1.29,-0.55)	-0.18	(-0.73,0.34)	-0.22	(-0.42,-0.03)	-0.29	(-0.53,-0.08)	-0.16	(-0.33,0.01)
β_8	-0.01	(-0.03,0.03)	-0.68	(-1.10,-0.32)	-0.23	(-0.76,0.34)	-0.08	(-0.11,-0.04)	-0.27	(-0.46,-0.08)	-0.19	(-0.37,-0.03)
σ_b							0.87	(0.64,1.22)	1.08	(0.78,1.52)	0.88	(0.64, 1.23)
σ_{θ}					0.87	(0.78,0.97)					0.25	(0.22,0.28)
α			1.14	(1.01, 1.34)					13.19	(9.99,17.05)		
DIC	DIC 45576.50		1612.09		1614.61		3816.21		1595.95		1597.27	

 as expected, the 95% credible interval obtained from the GLM are narrower than those obtained from the other models

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

臣

Asthma attack study: Posterior Summary Statistics

	GLM		Multiplicative w/o b _i		Additive w/o b _i		GLMM		Multiplicative with b _i		Additive with b _i	
Par.	Mean Cred. I.	Mean	Cred. I.	Mean	Cred. I.	Mean	Cred. I.	Mean	Cred. I.	Mean	Cred. I.	
β_0	-4.26 (-4.32,-4.19)	-3.94	(-4.03,-3.83)	-4.06	(-4.15,-3.96)	-4.36	(-4.48,-4.25)	-4.22	(-4.37,-4.07)	-4.26	(-4.39,-4.13)	
β_1	-0.10 (-0.18,-0.01)	-0.08	(-0.20,0.04)	-0.08	(-0.20,0.05)	-0.10	(-0.26,0.07)	-0.09	(-0.26,0.08)	-0.09	(-0.27,0.08)	
σ_b						0.50	(0.43,0.58)	0.48	(0.40,0.56)	0.47	(0.39,0.56)	
σ_{θ}				0.68	(0.59,0.76)					0.44	(0.31,0.56)	
α		3.42	(2.71,4.32)					9.15	(4.87,20.82)			
DIC	18679		18638		18551		18556		18519		18490	

 using a GLM model for these data will lead to a significant effect of the treatment while the other models prove insignificant for treatment effect

Kidney Study: Posterior Summary Statistics

	GLM		Multiplicative w/o b _i		Additive w/o b _i		GLMM		Multiplicative with b _i		Additive with b _i	
Par.	Mean	Cred. I.	Mean	Cred. I.	Mean	Cred. I.	Mean	Cred. I.	Mean	Cred. I.	Mean	Cred. I.
β_0	-3.79	(-4.82,-2.85)	-3.77	(-4.81,-2.78)	-3.77	(-4.83,-2.78)	-3.76	(-4.92,-2.61)	-3.73	(-4.92,-2.70)	-3.76	(-4.92,-2.65)
β_1	0.00	(-0.02,0.03)	0.00	(-0.02,0.03)	0.00	(-0.02 ,0.03)	0.00	(-0.02,0.03)	0.00	(-0.02,0.03)	0.00	(-0.02,0.03)
β_2	0.04	(-0.75,0.82)	0.06	(-0.75,0.85)	0.12	(-0.78, 1.02)	0.11	(-0.84,1.11)	0.12	(-0.83,1.05)	0.16	(-0.86, 1.17)
β_3	0.52	(-0.26, 1.31)	0.50	(-0.30,1.27)	0.50	(-0.39,1.35)	0.52	(-0.41,1.45)	0.53	(-0.45,1.51)	0.51	(-0.49,1.47)
β_4	-1.37	(-2.55,-0.26)	-1.31	(-2.56,-0.16)	-1.2	(-2.52,0.10)	-1.06	(-2.48,0.40)	-1.03	(-2.47,0.45)	-1.02	(-2.47,0.45)
β_5	-1.59	(-2.24,-0.89)	-1.60	(-2.25,-0.92)	-1.62	(-2.31,-0.89)	-1.63	(-2.41,-0.85)	-1.63	(-2.41,-0.84)	-1.63	(-2.40,-0.82)
σ_b							0.46	(0.03,0.96)	0.44	(0.02,0.94)	0.40	(0.02,0.94)
σ_{θ}											0.35	(0.01,0.84)
α			48.68	(4.45,98.05)					51.34	(5.60,97.77)		
DIC		672.78		672.21		671.24		671.56		671.56		671.74

• all the models perform similarly

Э

Simulation Study: Motivation

• to investigate the performance of the two models in terms of

- computation time
- parameter estimation
- 95% coverage probability and DIC values
- to study the impact of misspecification of the GLM and GLMM models

(D) (A) (A)

Exponential Model for Time-to-event Data

- we simulated data according to both models
- $\beta_0 = -4.36, \beta_1 = -0.098$
- different level of clustering and overdsipersion was considered
- the shape parameter r = 1
- sample size and cluster size were equal to 60 and 10
- 100 datasets, from both additive and multiplicative model
- GLM, GLMM, additive and multiplicative models were fitted
- the bias, MSE, 95% coverage probability, DIC values and computation time were calculated

• For high and moderate overdispersion:

- misspecification of the GLM leads to invalid inference of the intercept and the slope
- misspecification of the GLMM leads to invalid inference of the intercept and σ_b
- misspecifcation of the GLMM does not cause serious flaws in inference for the slope

For low overdispersion:

- misspecification of the GLM and GLMM does not affect estimation and inference
- as σ_b increases, the impact of misspecification of the GLM increases
- there is a difference between the additive and multiplicative models in the estimation and inference of the intercept

Bernoulli Model for Binary Data

- $Y_{ij}|b_i, \theta_{ij} \sim \text{Binomial}(\pi_{ij}, m_{ij} = 1).$
- $\beta_1 = -1.804$, $\beta_2 = -1.659$, $\beta_3 = -0.574$, and $\beta_4 = -0.411$
- covariates: time and treatment
- we considered a sufficiently large sample size with 300 subjects, each of them measured at 10 time points
- one hundred data sets were generated and the GLM, GLMM, additive, and multiplicative models were fitted
- the bias, MSE, 95% coverage probability, DIC values and computation time were calculated

• Additive overdispersion:

- for high overdispersion, misspecification of the GLM causes serious flaws in inference for all parameters and
- misspecification of the GLMM produces invalid inferences for all parameters
- for moderate overdispersion, it only affects the intercept
- neither the intercept nor the slope for low overdispersion
- for moderate and low overdispersion, misspecification of the GLMM does not affect the inference of the parameters, except for the between subject variation
- for high overdispersion, using the additive or multiplicative model affects the inference about all of the parameters

Multiplicative overdispersion:

- misspecification of the GLM affects only the inference of intercepts but not for the slopes
- misspecification of the GLMM causes flaws in inference for the intercepts and σ_b
- there is a difference between the additive and multiplicative models in the estimation and inference of the intercept

Binomial Model

- similar to the Bernoulli case except now $Y_{ij}|b_i, \theta_{ij} \sim \text{Binomial}(\pi_{ij}, m_{ij} = 20)$
- for convenience, we assumed the number of trials to be fixed for all observations
- the sample size and cluster size were equal to 60 and 10

• Additive overdispersion:

- for high overdispersion, misspecification of the GLM and GLMM leads to invalid inferences of the parameters and
- as the overdispersion level decreases, the impact of misspecification of these two models reduces

• Multiplicative overdispersion:

- misspecification of the GLM affects only the inference of intercepts but not for the slopes
- misspecification of the GLMM causes flaws in inference for the intercepts and σ_b
- the additive and the multiplicative models perform similarly
- except that there are some differences in the estimation and inferences of the intercepts and σ_b

Computation Time

	Fitting model										
	We	ibull	Ber	noulli	Binomial						
Generating model	Add	Mult	Add	Mult	Add	Mult					
Additive	55:30:07	72:20:08	83:50:53	149:18:21	108:18:55	150:33:09					
Multiplicative	60:31:15	63:39:01	78:56:16	152:33:01	109:51:13	149:34:18					

• in all scenarios, the additive model converges faster than the multiplicative model, especially for binary data

(日) (同) (三) (三)

э

Concluding Remarks

Concluding Remarks

- misspecification of the GLM:
 - causes serious flaws in inference
- misspecification of the GLMM:
 - does not strongly affect inferences of the slopes in time-to-event outcomes
 - it does so for binary and binomial hierarchical data with high overdispersion

Concluding Remarks

Concluding Remarks

- the Bayesian approach converged well for some data sets, i.e., the HIV and onychomycosis studies
- difficulties were encountered with a likelihood approach implemented in the SAS procedure NLMIXED, for the multiplicative model
- the multiplicative exhibits more convergence issues and, higher computational expense
- both models can be used as useful alternatives

(D) (A) (A)

Further Research and Related Projects

Further Research

• to explore the effect of sample size and cluster size, especially for the binary data.

Э

Further Research and Related Projects

Thank You!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ