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Outline of presentation

1 9.00 – 9.45: (Quick & moderately clean) introduction to Bayesian
computation

– MCMC
– Latent Gaussian models
– Gaussian Markov Random Fields

2 9.45 – 10.00: Coffee break

3 10.00 – 10.45: Introduction to INLA

– Basic ideas
– Some details
– A simple example

4 10.45 – 11.00: Coffee break

5 11.00 – 12.00: Using the package R-INLA

– How does it work?
– Some simple examples
– (Slightly) more complex examples
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(Quick & moderately clean)
introduction to Bayesian

computation
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Bayesian computation

• In a (very small!) nutshell, Bayesian inference boils down to the computation
of posterior and/or predictive distributions

p(θ | y) =
p(y | θ)p(θ)∫
p(y | θ)p(θ)dθ

p(y∗ | y) =

∫
p(y∗ | θ)p(θ | y)dθ
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• Since the advent of simulation-based techniques (notably MCMC), Bayesian
computation has enjoyed incredible development

• This has certainly been helped by dedicated software (eg BUGS and then
WinBUGS, OpenBUGS, JAGS)

• MCMC methods are very general and can effectively be applied to “any”
model
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p(y | θ)p(θ)∫
p(y | θ)p(θ)dθ

p(y∗ | y) =

∫
p(y∗ | θ)p(θ | y)dθ

• Since the advent of simulation-based techniques (notably MCMC), Bayesian
computation has enjoyed incredible development

• This has certainly been helped by dedicated software (eg BUGS and then
WinBUGS, OpenBUGS, JAGS)

• MCMC methods are very general and can effectively be applied to “any”
model

• However:
– Even if in theory, MCMC can provide (nearly) exact inference, given perfect

convergence and MC error → 0, in practice, this has to be balanced with
model complexity and running time

– This is particularly an issue for problems characterised by large data or very
complex structure (eg hierarchical models)
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MCMC — Gibbs sampling

• The objective is to build a Markov Chain (MC) that converges to the desired
target distribution p (eg the unknown posterior distribution of some
parameter of interest)

• Usually easy to create a MC, under mild “regularity conditions”
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target distribution p (eg the unknown posterior distribution of some
parameter of interest)

• Usually easy to create a MC, under mild “regularity conditions”

• The Gibbs sampling (GS) is one of the most popular schemes for MCMC
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target distribution p (eg the unknown posterior distribution of some
parameter of interest)
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• The Gibbs sampling (GS) is one of the most popular schemes for MCMC
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(1)
1 , θ

(0)
3 , . . . , θ

(0)
J , y)

. . .

Sample θ
(1)
J from the conditional distribution p(θJ | θ

(1)
1 , θ

(1)
2 , . . . , θ

(1)
J−1, y)

3. Repeat step 2. for S times until convergence is reached to the target
distribution p(θ | y)

4. Use the sample from the target distribution to compute all relevant statistics:
(posterior) mean, variance, credibility intervals, etc.

• If the full conditionals are not readily available, they need to be estimated
(eg via Metropolis-Hastings or slice sampling) before applying the GS
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MCMC — convergence
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−2 0 2 4 6 8

2
3

4
5

6
7

After 1000 iterations

µ

σ

1

2

3

4

5
6

7

8
9

10

11

12

13

14

15

16
17

18

19 20
21

22

23

24

25 26

27

28

29

30

31

32

33

34

35

36

37

38 39

40

41

42

43

44

45

46

47

48
4950

51

52

53

5455

56

57

58

59

60

61

62 63

64
6566

67

68

69

70

71

72 73

74

75

76

77

78

79

80

81

82

83

84
85

86

87

88

89

90

91

92

93

94
95

96

97

98
99100

101

102

103

104
105

106

107 108

109

110

111

112

113

114

115
116117
118119

120

121
122

123

124

125
126

127

128
129

130

131
132

133

134

135
136

137

138

139140
141142

143

144

145

146

147

148

149150

151
152

153 154

155
156

157
158

159

160

161

162 163
164

165

166

167

168
169

170

171

172

173

174

175

176

177

178

179
180181182

183

184

185

186
187

188 189

190

191 192

193

194

195

196197

198
199

200201

202
203

204

205

206

207

208

209

210

211 212
213

214

215

216

217

218
219

220

221

222

223

224225

226

227

228

229

230

231

232

233

234

235

236237
238

239

240

241

242

243

244

245

246

247

248

249

250251252

253
254

255

256257

258

259

260

261262

263

264

265

266

267

268

269

270

271

272

273

274

275

276
277

278
279

280

281

282

283

284

285

286
287288

289

290291

292

293

294

295
296

297

298

299
300

301

302 303

304305

306
307

308

309

310

311
312

313

314

315

316

317

318

319

320

321

322

323

324 325
326327

328

329

330

331

332

333

334335
336

337338
339

340

341

342

343

344

345

346

347

348
349

350

351

352

353

354
355

356

357

358

359
360

361
362

363

364

365

366

367

368

369

370

371

372
373

374

375

376377
378

379

380

381382

383

384

385

386

387

388

389
390
391

392

393

394

395

396

397
398

399

400

401402
403

404

405

406

407

408409

410

411

412

413

414415

416

417418419

420

421

422
423

424

425
426 427

428

429

430
431

432
433

434
435

436

437
438439

440

441

442

443 444
445446

447

448
449

450

451

452
453

454

455

456

457

458

459
460

461

462
463

464

465

466

467

468

469

470

471
472 473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488489
490

491

492
493

494

495

496 497

498

499

500
501

502
503

504
505

506

507

508
509

510

511

512
513

514
515

516

517

518

519
520

521
522

523

524

525

526

527

528

529
530

531
532

533
534

535

536

537538

539

540
541

542

543

544

545

546

547

548

549
550

551

552

553

554

555

556

557

558

559
560

561

562

563

564

565

566

567

568

569
570

571
572

573

574575

576
577

578

579

580

581

582

583

584

585

586

587

588
589

590

591
592

593
594
595

596

597

598

599

600

601602603
604

605

606

607
608609

610

611

612

613

614

615

616

617
618

619

620
621

622
623

624

625

626

627

628
629

630

631

632

633

634

635
636637

638

639
640

641

642

643

644

645

646

647

648

649

650

651

652

653

654 655

656

657658

659

660

661

662
663

664

665

666

667

668

669

670
671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689
690

691

692

693

694

695

696

697

698
699

700
701

702
703

704

705
706707

708
709

710

711712

713

714715
716

717

718

719

720

721
722 723

724

725

726727

728

729

730

731

732

733

734
735736737

738

739740

741

742

743

744

745

746 747

748

749

750

751

752

753
754

755

756

757758

759

760

761

762

763
764

765
766

767 768

769

770771

772

773

774

775

776

777

778
779

780

781

782

783

784

785

786

787

788
789

790791

792

793

794

795796
797

798
799

800

801

802

803
804805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830
831

832

833

834
835

836
837

838

839
840

841

842843

844

845

846

847

848

849

850

851
852

853

854

855

856857858

859

860

861

862

863

864

865

866

867

868
869

870

871

872

873

874
875

876

877
878

879

880

881

882

883

884
885886 887

888

889

890

891
892

893

894895

896

897

898

899 900

901
902

903

904

905

906
907908

909

910

911

912 913

914

915 916
917

918919 920
921

922

923

924925

926

927

928
929

930

931

932
933

934

935

936

937

938

939

940
941

942

943944

945

946

947

948

949
950

951

952
953954

955

956957

958

959

960

961

962963
964

965

966

967

968

969
970

971
972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

Gianluca Baio ( UCL) Introduction to INLA Bayes 2013, 21 May 2013 7 / 92



MCMC — convergence
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MCMC — convergence
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• Formal assessment of convergence: potential scale reduction

R̂ =

√
V̂ar(θk | y)

W (θk)
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MCMC — autocorrelation
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• Formal assessment of autocorrelation: effective sample size

neff =
S

1 + 2
∑∞
t=1 ρt
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MCMC — brute force
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Autocorrelation function for α − Uncentred model with thinning
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MCMC — pros & cons

• “Standard” MCMC sampler are generally easy-ish to program and are in fact
implemented in readily available software

• However, depending on the complexity of the problem, their efficiency might
be limited
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Basics of INLA

The basic ideas revolve around

• Formulating the model using a specific characterisation

– All models that can be formulated in this way have certain features in
common, which facilitate the computational aspects

– The characterisation is still quite general and covers a wide range of possible
models (more on that later!)

– NB: This implies less flexibility with respect to MCMC — but in many cases
this is not a huge limitation!
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Basics of INLA

The basic ideas revolve around

• Formulating the model using a specific characterisation

– All models that can be formulated in this way have certain features in
common, which facilitate the computational aspects

– The characterisation is still quite general and covers a wide range of possible
models (more on that later!)

– NB: This implies less flexibility with respect to MCMC — but in many cases
this is not a huge limitation!

• Use some basic probability conditions to approximate the relevant
distributions

• Compute the relevant quantities typically using numerical methods
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Latent Gaussian models (LGMs)

• The general problem of (parametric) inference is posited by assuming a
probability model for the observed data, as a function of some relevant
parameters

y | θ,ψ ∼ p(y | θ,ψ) =

n∏

i=1

p(yi | θ,ψ)
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probability model for the observed data, as a function of some relevant
parameters

y | θ,ψ ∼ p(y | θ,ψ) =

n∏

i=1

p(yi | θ,ψ)

• Often (in fact for a surprisingly large range of models!), we can assume that
the parameters are described by a Gaussian Markov Random Field
(GMRF)

θ | ψ ∼ Normal(0,Σ(ψ))

θl ⊥⊥ θm | θ−lm

where

– The notation “−lm” indicates all the other elements of the parameters vector,
excluding elements l and m

– The covariance matrix Σ depends on some hyper-parameters ψ
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Latent Gaussian models (LGMs)

• The general problem of (parametric) inference is posited by assuming a
probability model for the observed data, as a function of some relevant
parameters

y | θ,ψ ∼ p(y | θ,ψ) =

n∏

i=1

p(yi | θ,ψ)

• Often (in fact for a surprisingly large range of models!), we can assume that
the parameters are described by a Gaussian Markov Random Field
(GMRF)

θ | ψ ∼ Normal(0,Σ(ψ))

θl ⊥⊥ θm | θ−lm

where

– The notation “−lm” indicates all the other elements of the parameters vector,
excluding elements l and m

– The covariance matrix Σ depends on some hyper-parameters ψ

• This kind of models is often referred to as Latent Gaussian models
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LGMs as a general framework

• In general, we can partition ψ = (ψ1,ψ2) and re-express a LGM as

ψ ∼ p(ψ) (“hyperprior”)

θ | ψ ∼ p(θ | ψ) = Normal(0,Σ(ψ1)) (“GMRF prior”)

y | θ,ψ ∼
∏

i

p(yi | θ,ψ2) (“data model”)

ie ψ1 are the hyper-parameters and ψ2 are nuisance parameters
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• In general, we can partition ψ = (ψ1,ψ2) and re-express a LGM as

ψ ∼ p(ψ) (“hyperprior”)

θ | ψ ∼ p(θ | ψ) = Normal(0,Σ(ψ1)) (“GMRF prior”)

y | θ,ψ ∼
∏

i

p(yi | θ,ψ2) (“data model”)

ie ψ1 are the hyper-parameters and ψ2 are nuisance parameters

• The dimension of θ can be very large (eg 102-105)

• Conversely, because of the conditional independence properties, the
dimension of ψ is generally small (eg 1-5)

Gianluca Baio ( UCL) Introduction to INLA Bayes 2013, 21 May 2013 14 / 92



LGMs as a general framework

• A very general way of specifying the problem is by modelling the mean for
the i-th unit by means of an additive linear predictor, defined on a suitable
scale (e.g. logistic for binomial data)

ηi = α+

M∑

m=1

βmxmi +

L∑

l=1

fl(zli)

where

– α is the intercept;
– β = (β1, . . . , βM ) quantify the effect of x = (x1, . . . , xM ) on the response;
– f = {f1(·), . . . , fL(·)} is a set of functions defined in terms of some covariates
z = (z1, . . . , zL)

and then assume
θ = (α,β,f) ∼ GMRF(ψ)
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the i-th unit by means of an additive linear predictor, defined on a suitable
scale (e.g. logistic for binomial data)

ηi = α+

M∑

m=1

βmxmi +

L∑

l=1

fl(zli)

where

– α is the intercept;
– β = (β1, . . . , βM ) quantify the effect of x = (x1, . . . , xM ) on the response;
– f = {f1(·), . . . , fL(·)} is a set of functions defined in terms of some covariates
z = (z1, . . . , zL)

and then assume
θ = (α,β,f) ∼ GMRF(ψ)

• NB: This of course implies some form of Normally-distributed marginals for
α,β and f
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LGMs as a general framework — examples

Upon varying the form of the functions fl(·), this formulation can accommodate a
wide range of models
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Upon varying the form of the functions fl(·), this formulation can accommodate a
wide range of models

• Standard regression

– fl(·) = NULL

• Hierarchical models

– fl(·) ∼ Normal(0, σ2
f ) (Exchangeable)

σ2
f | ψ ∼ some common distribution
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LGMs as a general framework — examples

Upon varying the form of the functions fl(·), this formulation can accommodate a
wide range of models

• Standard regression

– fl(·) = NULL

• Hierarchical models

– fl(·) ∼ Normal(0, σ2
f ) (Exchangeable)

σ2
f | ψ ∼ some common distribution

• Spatial and spatio-temporal models

– Two components: f1(·) ∼ CAR (Spatially structured effects)
Two components: f2(·) ∼ Normal(0, σ2

f2
) (Unstructured residual)
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• Hierarchical models

– fl(·) ∼ Normal(0, σ2
f ) (Exchangeable)

σ2
f | ψ ∼ some common distribution

• Spatial and spatio-temporal models

– Two components: f1(·) ∼ CAR (Spatially structured effects)
Two components: f2(·) ∼ Normal(0, σ2

f2
) (Unstructured residual)

• Spline smoothing

– fl(·) ∼ AR(φ, σ2
ε)
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LGMs as a general framework — examples

Upon varying the form of the functions fl(·), this formulation can accommodate a
wide range of models

• Standard regression

– fl(·) = NULL

• Hierarchical models

– fl(·) ∼ Normal(0, σ2
f ) (Exchangeable)

σ2
f | ψ ∼ some common distribution

• Spatial and spatio-temporal models

– Two components: f1(·) ∼ CAR (Spatially structured effects)
Two components: f2(·) ∼ Normal(0, σ2

f2
) (Unstructured residual)

• Spline smoothing

– fl(·) ∼ AR(φ, σ2
ε)

• Survival models / logGaussian Cox Processes

– More complex specification in theory, but relatively easy to fit within the INLA
framework!
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Gaussian Markov Random Field

In order to preserve the underlying conditional independence structure in a GMRF,
it is necessary to constrain the parameterisation
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Gaussian Markov Random Field

In order to preserve the underlying conditional independence structure in a GMRF,
it is necessary to constrain the parameterisation

• Generally, it is complicated to do it in terms of the covariance matrix Σ

– Typically, Σ is dense (ie many of the entries are non-zero)
– If it happens to be sparse, this implies (marginal) independence among the

relevant elements of θ — this is generally too stringent a requirement!
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Gaussian Markov Random Field

In order to preserve the underlying conditional independence structure in a GMRF,
it is necessary to constrain the parameterisation

• Generally, it is complicated to do it in terms of the covariance matrix Σ

– Typically, Σ is dense (ie many of the entries are non-zero)
– If it happens to be sparse, this implies (marginal) independence among the

relevant elements of θ — this is generally too stringent a requirement!

• Conversely, it is much simpler when using the precision matrix Q =: Σ−1

– As it turns out, it can be shown that

θl ⊥⊥ θm | θ−lm ⇔ Qlm = 0

– Thus, under conditional independence (which is a less restrictive constraint),
the precision matrix is typically sparse

– We can use existing numerical methods to deal with sparse matrices (eg the R

package Matrix)
– Most computations in GMRFs are performed in terms of computing Cholesky’s

factorisations

Gianluca Baio ( UCL) Introduction to INLA Bayes 2013, 21 May 2013 17 / 92



Precision matrix and conditional independence
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Precision matrix and conditional independence

——————————————————–
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MCMC and LGMs

• (Standard) MCMC methods tend to perform poorly when applied to
(non-trivial) LGMs. This is due to several factors

– The components of the latent Gaussian field θ tend to be highly correlated,
thus impacting on convergence and autocorrelation

– Especially when the number of observations is large, θ and ψ also tend to be
highly correlated

ρ = 0.95 ρ = 0.20

θ1 θ1

θ2θ2
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MCMC and LGMs

• (Standard) MCMC methods tend to perform poorly when applied to
(non-trivial) LGMs. This is due to several factors

– The components of the latent Gaussian field θ tend to be highly correlated,
thus impacting on convergence and autocorrelation

– Especially when the number of observations is large, θ and ψ also tend to be
highly correlated

ρ = 0.95 ρ = 0.20

θ1 θ1

θ2θ2

• Again, blocking and overparameterisation can alleviate, but rarely eliminate
the problem
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Summary so far

• Bayesian computation (especially for LGMs) is in general difficult

• MCMC can be efficiently used in many simple cases, but becomes a bit
trickier for complex models

– Issues with convergence
– Time to run can be very long
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Summary so far

• Bayesian computation (especially for LGMs) is in general difficult

• MCMC can be efficiently used in many simple cases, but becomes a bit
trickier for complex models

– Issues with convergence
– Time to run can be very long

• A wide class of statistical models can be represented in terms of LGM

• This allows us to take advantage of nice computational properties

– GMRFs
– Sparse precision matrices

• This is at the heart of the INLA approach
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Introduction to INLA
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Integrated Nested Laplace Approximation (INLA)

• The starting point to understand the INLA approach is the definition of
conditional probability, which holds for any pair of variables (x, z) — and,
technically, provided p(z) > 0

p(x | z) =:
p(x, z)

p(z)

which can be re-written as

p(z) =
p(x, z)

p(x | z)
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Integrated Nested Laplace Approximation (INLA)

• The starting point to understand the INLA approach is the definition of
conditional probability, which holds for any pair of variables (x, z) — and,
technically, provided p(z) > 0

p(x | z) =:
p(x, z)

p(z)

which can be re-written as

p(z) =
p(x, z)

p(x | z)

• In particular, a conditional version can be obtained further considering a third
variable w as

p(z | w) =
p(x, z | w)

p(x | z, w)

which is particularly relevant to the Bayesian case

Gianluca Baio ( UCL) Introduction to INLA Bayes 2013, 21 May 2013 22 / 92



Integrated Nested Laplace Approximation (INLA)

• The second “ingredient” is Laplace approximation
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Integrated Nested Laplace Approximation (INLA)

• The second “ingredient” is Laplace approximation

• Main idea: approximate log g(x) using a quadratic function by means of a
Taylor’s series expansion around the mode x̂

log g(x) ≈ log g(x̂) +
∂ log g(x̂)

∂x
(x− x̂) +

1

2

∂2 log g(x̂)

∂x2
(x− x̂)2

= log g(x̂) +
1

2

∂2 log g(x̂)

∂x2
(x − x̂)2

(
since ∂ log g(x̂)

∂x
= 0

)

Gianluca Baio ( UCL) Introduction to INLA Bayes 2013, 21 May 2013 23 / 92



Integrated Nested Laplace Approximation (INLA)

• The second “ingredient” is Laplace approximation

• Main idea: approximate log g(x) using a quadratic function by means of a
Taylor’s series expansion around the mode x̂

log g(x) ≈ log g(x̂) +
∂ log g(x̂)

∂x
(x− x̂) +

1

2

∂2 log g(x̂)

∂x2
(x− x̂)2

= log g(x̂) +
1

2

∂2 log g(x̂)

∂x2
(x − x̂)2

(
since ∂ log g(x̂)

∂x
= 0

)

• Setting σ̂2 = −1
/
∂2 log g(x̂)

∂x2 we can re-write

log g(x) ≈ log g(x̂)−
1

2σ̂2
(x− x̂)2

or equivalently
∫
g(x)dx =

∫
elog g(x)dx ≈ const

∫
exp

[
−
(x− x̂)2

2σ̂2

]
dx
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• The second “ingredient” is Laplace approximation

• Main idea: approximate log g(x) using a quadratic function by means of a
Taylor’s series expansion around the mode x̂

log g(x) ≈ log g(x̂) +
∂ log g(x̂)

∂x
(x− x̂) +

1

2

∂2 log g(x̂)

∂x2
(x− x̂)2

= log g(x̂) +
1

2

∂2 log g(x̂)

∂x2
(x − x̂)2

(
since ∂ log g(x̂)

∂x
= 0

)

• Setting σ̂2 = −1
/
∂2 log g(x̂)

∂x2 we can re-write

log g(x) ≈ log g(x̂)−
1

2σ̂2
(x− x̂)2

or equivalently
∫
g(x)dx =

∫
elog g(x)dx ≈ const

∫
exp

[
−
(x− x̂)2

2σ̂2

]
dx

• Thus, under LA, g(x) ≈ Normal(x̂, σ̂2)
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Laplace approximation — example

• Consider a χ2 distribution: p(x) =
g(x)

c
=
x
k
2−1e

−x
2

c
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Laplace approximation — example

• Consider a χ2 distribution: p(x) =
g(x)

c
=
x
k
2−1e

−x
2

c

1 l(x) = log g(x) =

(

k

2
− 1

)

log x−
x

2
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• Consider a χ2 distribution: p(x) =
g(x)

c
=
x
k
2−1e

−x
2

c

1 l(x) = log g(x) =

(

k

2
− 1

)

log x−
x

2

2 l
′(x) =

∂ log g(x)

∂x
=

(

k
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)

x
−1 −

1

2
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c
=
x
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(

k

2
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)

log x−
x
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∂x
=

(

k

2
− 1

)

x
−1 −

1

2

3 l
′′(x) =

∂2 log g(x)

∂x2
= −

(

k

2
− 1

)

x
−2

Gianluca Baio ( UCL) Introduction to INLA Bayes 2013, 21 May 2013 24 / 92



Laplace approximation — example

• Consider a χ2 distribution: p(x) =
g(x)

c
=
x
k
2−1e

−x
2

c

1 l(x) = log g(x) =

(

k

2
− 1

)

log x−
x

2

2 l
′(x) =

∂ log g(x)

∂x
=

(

k

2
− 1

)

x
−1 −

1

2

3 l
′′(x) =

∂2 log g(x)

∂x2
= −

(

k

2
− 1

)

x
−2

• Then

– Solving l′(x) = 0 we find the mode: x̂ = k − 2

– Evaluating −
1

l′′(x)
at the mode gives σ̂2 = 2(k − 2)
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Laplace approximation — example

• Consider a χ2 distribution: p(x) =
g(x)

c
=
x
k
2−1e

−x
2

c

1 l(x) = log g(x) =

(

k

2
− 1

)

log x−
x

2

2 l
′(x) =

∂ log g(x)

∂x
=

(

k

2
− 1

)

x
−1 −

1

2

3 l
′′(x) =

∂2 log g(x)

∂x2
= −

(

k

2
− 1

)

x
−2

• Then

– Solving l′(x) = 0 we find the mode: x̂ = k − 2

– Evaluating −
1

l′′(x)
at the mode gives σ̂2 = 2(k − 2)

• Consequently, we can approximate p(x) as

p(x) ≈ p̃(x) = Normal(k − 2, 2(k − 2))
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Laplace approximation — example
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Integrated Nested Laplace Approximation (INLA)

• The general idea is that using the fundamental probability equations, we can
approximate a generic conditional (posterior) distribution as

p̃(z | w) =
p(x, z | w)

p̃(x | z, w)
,

where p̃(x | z, w) is the Laplace approximation to the conditional distribution
of x given z, w
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Integrated Nested Laplace Approximation (INLA)

• The general idea is that using the fundamental probability equations, we can
approximate a generic conditional (posterior) distribution as

p̃(z | w) =
p(x, z | w)

p̃(x | z, w)
,

where p̃(x | z, w) is the Laplace approximation to the conditional distribution
of x given z, w

• This idea can be used to approximate any generic required posterior
distribution
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Integrated Nested Laplace Approximation (INLA)

Objective of Bayesian estimation

• In a Bayesian LGM, the required distributions are

p(θj | y) =

∫
p(θj ,ψ | y)dψ =

∫
p(ψ | y)p(θj | ψ,y)dψ

p(ψk | y) =

∫
p(ψ | y)dψ−k
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Integrated Nested Laplace Approximation (INLA)

Objective of Bayesian estimation

• In a Bayesian LGM, the required distributions are

p(θj | y) =

∫
p(θj ,ψ | y)dψ =

∫
p(ψ | y)p(θj | ψ,y)dψ

p(ψk | y) =

∫
p(ψ | y)dψ−k

• Thus we need to estimate:

(1.) p(ψ | y), from which also all the relevant marginals p(ψk | y) can be
obtained;
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Objective of Bayesian estimation

• In a Bayesian LGM, the required distributions are

p(θj | y) =

∫
p(θj ,ψ | y)dψ =

∫
p(ψ | y)p(θj | ψ,y)dψ

p(ψk | y) =

∫
p(ψ | y)dψ−k

• Thus we need to estimate:

(1.) p(ψ | y), from which also all the relevant marginals p(ψk | y) can be
obtained;

(2.) p(θj | ψ,y), which is needed to compute the marginal posterior for the
parameters
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Integrated Nested Laplace Approximation (INLA)

(1.) can be easily estimated as

p(ψ | y) =
p(θ,ψ | y)

p(θ | ψ,y)
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Integrated Nested Laplace Approximation (INLA)

(1.) can be easily estimated as

p(ψ | y) =
p(θ,ψ | y)

p(θ | ψ,y)

=
p(y | θ,ψ)p(θ,ψ)

p(y)

1

p(θ | ψ,y)
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Integrated Nested Laplace Approximation (INLA)

(1.) can be easily estimated as

p(ψ | y) =
p(θ,ψ | y)

p(θ | ψ,y)

=
p(y | θ,ψ)p(θ,ψ)

p(y)

1

p(θ | ψ,y)

=
p(y | θ)p(θ | ψ)p(ψ)

p(y)

1

p(θ | ψ,y)
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p(ψ)p(θ | ψ)p(y | θ)

p(θ | ψ,y)
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Integrated Nested Laplace Approximation (INLA)

(1.) can be easily estimated as

p(ψ | y) =
p(θ,ψ | y)

p(θ | ψ,y)

=
p(y | θ,ψ)p(θ,ψ)

p(y)

1

p(θ | ψ,y)

=
p(y | θ)p(θ | ψ)p(ψ)

p(y)

1

p(θ | ψ,y)

∝
p(ψ)p(θ | ψ)p(y | θ)

p(θ | ψ,y)

≈
p(ψ)p(θ | ψ)p(y | θ)

p̃(θ | ψ,y)

∣∣∣∣
θ=θ̂(ψ)

=: p̃(ψ | y)

where

– p̃(θ | ψ,y) is the Laplace approximation of p(θ | ψ,y)
– θ = θ̂(ψ) is its mode
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Integrated Nested Laplace Approximation (INLA)

(2.) is slightly more complex, because in general there will be more elements in θ
than there are in ψ and thus this computation is more expensive
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Integrated Nested Laplace Approximation (INLA)

(2.) is slightly more complex, because in general there will be more elements in θ
than there are in ψ and thus this computation is more expensive

• One easy possibility is to approximate p(θj | ψ,y) directly using a Normal
distribution, where the precision matrix is based on the Cholesky
decomposition of the precision matrix Q. While this is very fast, the
approximation is generally not very good
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than there are in ψ and thus this computation is more expensive

• One easy possibility is to approximate p(θj | ψ,y) directly using a Normal
distribution, where the precision matrix is based on the Cholesky
decomposition of the precision matrix Q. While this is very fast, the
approximation is generally not very good

• Alternatively, we can write θ = {θj , θ−j}, use the definition of conditional
probability and again Laplace approximation to obtain

p(θj | ψ,y) =
p ({θj , θ−j} | ψ,y)

p(θ−j | θj ,ψ,y)
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• One easy possibility is to approximate p(θj | ψ,y) directly using a Normal
distribution, where the precision matrix is based on the Cholesky
decomposition of the precision matrix Q. While this is very fast, the
approximation is generally not very good

• Alternatively, we can write θ = {θj , θ−j}, use the definition of conditional
probability and again Laplace approximation to obtain

p(θj | ψ,y) =
p ({θj , θ−j} | ψ,y)

p(θ−j | θj ,ψ,y)
=
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Integrated Nested Laplace Approximation (INLA)

(2.) is slightly more complex, because in general there will be more elements in θ
than there are in ψ and thus this computation is more expensive

• One easy possibility is to approximate p(θj | ψ,y) directly using a Normal
distribution, where the precision matrix is based on the Cholesky
decomposition of the precision matrix Q. While this is very fast, the
approximation is generally not very good

• Alternatively, we can write θ = {θj , θ−j}, use the definition of conditional
probability and again Laplace approximation to obtain

p(θj | ψ,y) =
p ({θj , θ−j} | ψ,y)

p(θ−j | θj ,ψ,y)
=
p ({θj , θ−j},ψ | y)

p(ψ | y)

1

p(θ−j | θj ,ψ,y)

∝
p (θ,ψ | y)

p(θ−j | θj ,ψ,y)
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p(θ−j | θj ,ψ,y)
=
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p(ψ | y)

1

p(θ−j | θj ,ψ,y)

∝
p (θ,ψ | y)

p(θ−j | θj ,ψ,y)
∝
p(ψ)p(θ | ψ)p(y | θ)
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distribution, where the precision matrix is based on the Cholesky
decomposition of the precision matrix Q. While this is very fast, the
approximation is generally not very good

• Alternatively, we can write θ = {θj , θ−j}, use the definition of conditional
probability and again Laplace approximation to obtain

p(θj | ψ,y) =
p ({θj , θ−j} | ψ,y)

p(θ−j | θj ,ψ,y)
=
p ({θj , θ−j},ψ | y)

p(ψ | y)

1

p(θ−j | θj ,ψ,y)

∝
p (θ,ψ | y)

p(θ−j | θj ,ψ,y)
∝
p(ψ)p(θ | ψ)p(y | θ)

p(θ−j | θj ,ψ,y)

≈
p(ψ)p(θ | ψ)p(y | θ)

p̃(θ−j | θj ,ψ,y)

∣∣∣∣
θ−j=θ̂−j(θj,ψ)

=: p̃(θj | ψ,y)
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Integrated Nested Laplace Approximation (INLA)

• Because (θ−j | θj ,ψ,y) are reasonably Normal, the approximation works
generally well

• However, this strategy can be computationally expensive
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Integrated Nested Laplace Approximation (INLA)

• Because (θ−j | θj ,ψ,y) are reasonably Normal, the approximation works
generally well

• However, this strategy can be computationally expensive

• The most efficient algorithm is the “Simplified Laplace Approximation”

– Based on a Taylor’s series expansion up to the third order of both numerator
and denominator for p̃(θj | ψ,y)

– This effectively “corrects” the Gaussian approximation for location and
skewness to increase the fit to the required distribution

Gianluca Baio ( UCL) Introduction to INLA Bayes 2013, 21 May 2013 30 / 92



Integrated Nested Laplace Approximation (INLA)

• Because (θ−j | θj ,ψ,y) are reasonably Normal, the approximation works
generally well

• However, this strategy can be computationally expensive

• The most efficient algorithm is the “Simplified Laplace Approximation”

– Based on a Taylor’s series expansion up to the third order of both numerator
and denominator for p̃(θj | ψ,y)

– This effectively “corrects” the Gaussian approximation for location and
skewness to increase the fit to the required distribution

• This is the algorithm implemented by default by R-INLA, but this choice can
be modified

– If extra precision is required, it is possible to run the full Laplace
approximation — of course at the expense of running time!
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Integrated Nested Laplace Approximation (INLA)

Operationally, the INLA algorithm proceeds with the following steps:
i. Explore the marginal joint posterior for the hyper-parameters p̃(ψ | y)

ψ1

ψ2
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Operationally, the INLA algorithm proceeds with the following steps:
i. Explore the marginal joint posterior for the hyper-parameters p̃(ψ | y)

– Locate the mode ψ̂ by optimising log p̃(ψ | y), eg using Newton-like
algorithms

ψ1

ψ2
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Integrated Nested Laplace Approximation (INLA)

Operationally, the INLA algorithm proceeds with the following steps:
i. Explore the marginal joint posterior for the hyper-parameters p̃(ψ | y)

– Locate the mode ψ̂ by optimising log p̃(ψ | y), eg using Newton-like
algorithms

– Compute the Hessian at ψ̂ and change co-ordinates to standardise the
variables; this corrects for scale and rotation and simplifies integration

ψ1

ψ2

z 1
z 2

E[z] = 0

V[z] = σ
2
I
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Integrated Nested Laplace Approximation (INLA)

Operationally, the INLA algorithm proceeds with the following steps:
i. Explore the marginal joint posterior for the hyper-parameters p̃(ψ | y)

– Locate the mode ψ̂ by optimising log p̃(ψ | y), eg using Newton-like
algorithms

– Compute the Hessian at ψ̂ and change co-ordinates to standardise the
variables; this corrects for scale and rotation and simplifies integration

– Explore log p̃(ψ | y) and produce a grid of H points {ψ∗

h} associated with the
bulk of the mass, together with a corresponding set of area weights {∆h}

ψ1

ψ2

z 1
z 2

Gianluca Baio ( UCL) Introduction to INLA Bayes 2013, 21 May 2013 31 / 92



Integrated Nested Laplace Approximation (INLA)

ii. For each element ψ∗
h in the grid,

– Obtain the marginal posterior p̃(ψ∗

h | y), using interpolation and possibly
correcting for (probable) skewness by using log-splines;

– Evaluate the conditional posteriors p̃(θj | ψ∗

h,y) on a grid of selected values
for θj ;
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Integrated Nested Laplace Approximation (INLA)

ii. For each element ψ∗
h in the grid,

– Obtain the marginal posterior p̃(ψ∗

h | y), using interpolation and possibly
correcting for (probable) skewness by using log-splines;

– Evaluate the conditional posteriors p̃(θj | ψ∗

h,y) on a grid of selected values
for θj ;

iii. Marginalise ψ∗
h to obtain the marginal posteriors p̃(θj | y) using numerical

integration

p̃(θj | y) ≈

H∑

h=1

p̃(θj | ψ
∗
h,y)p̃(ψ

∗
h | y)∆h
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Integrated Nested Laplace Approximation (INLA)

So, it’s all in the name...

Integrated Nested Laplace Approximation

• Because Laplace approximation is the basis to estimate the unknown
distributions

• Because the Laplace approximations are nested within one another

– Since (2.) is needed to estimate (1.)
– NB: Consequently the estimation of (1.) might not be good enough, but it

can be refined

• Because the required marginal posterior distributions are obtained by
(numerical) integration
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INLA — example

• Suppose we want to make inference on a very simple model

yij | θj , ψ ∼ Normal(θj , σ
2
0) (σ2

0 assumed known)

θj | ψ ∼ Normal(0, τ) (ψ = τ−1 is the precision)

ψ ∼ Gamma(a, b)
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• Suppose we want to make inference on a very simple model

yij | θj , ψ ∼ Normal(θj , σ
2
0) (σ2

0 assumed known)

θj | ψ ∼ Normal(0, τ) (ψ = τ−1 is the precision)

ψ ∼ Gamma(a, b)

• So, the model is made by a three-level hierarchy:

1 Data y = (yij) for i = 1, . . . , nj and j = 1, . . . , J
2 Parameters θ = (θ1, . . . , θJ )
3 Hyper-parameter ψ
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INLA — example

• Suppose we want to make inference on a very simple model

yij | θj , ψ ∼ Normal(θj , σ
2
0) (σ2

0 assumed known)

θj | ψ ∼ Normal(0, τ) (ψ = τ−1 is the precision)

ψ ∼ Gamma(a, b)

• So, the model is made by a three-level hierarchy:

1 Data y = (yij) for i = 1, . . . , nj and j = 1, . . . , J
2 Parameters θ = (θ1, . . . , θJ )
3 Hyper-parameter ψ

• NB: This model is in fact semi-conjugated, so inference is possible
numerically or using simple MCMC algorithms
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INLA — example

• Because of semi-conjugacy, we know that

θ,y | ψ ∼ Normal(·, ·)

and thus we can compute (numerically) all the marginals
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INLA — example

• Because of semi-conjugacy, we know that

θ,y | ψ ∼ Normal(·, ·)

and thus we can compute (numerically) all the marginals

• In particular

p(ψ | y) ∝ p(y | ψ)p(ψ)

∝

Gaussian︷ ︸︸ ︷
p(θ,y | ψ) p(ψ)

p(θ | y, ψ)︸ ︷︷ ︸
Gaussian

Gianluca Baio ( UCL) Introduction to INLA Bayes 2013, 21 May 2013 35 / 92



INLA — example

• Because of semi-conjugacy, we know that

θ,y | ψ ∼ Normal(·, ·)

and thus we can compute (numerically) all the marginals

• In particular

p(ψ | y) ∝ p(y | ψ)p(ψ)

∝

Gaussian︷ ︸︸ ︷
p(θ,y | ψ) p(ψ)

p(θ | y, ψ)︸ ︷︷ ︸
Gaussian

• Moreover, because p(θ | y) ∼ Normal(·, ·) and so are all the resulting
marginals (ie for every element j), it is easy to compute

p(θj | y) =

∫
p(θj | y, ψ)︸ ︷︷ ︸

Gaussian

p(ψ | y)︸ ︷︷ ︸
Approximated

dψ
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INLA — example

1. Select a grid of H points for ψ ({ψ∗

h
}) and the associated area weights ({∆h})

Posterior marginal for ψ : p(ψ | y) ∝ p(θ,y|ψ)p(ψ)
p(θ|y,ψ)
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INLA — example

2. Interpolate the posterior density to compute the approximation to the posterior

Posterior marginal for ψ (interpolated)
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INLA — example

3. Compute the posterior marginal for each θj given each ψ on the H−dimensional grid

Posterior marginal for θ1, conditional on each {ψ∗
h} value (unweighted)
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INLA — example

4. Weight the resulting (conditional) marginal posteriors by the density associated with each
ψ on the grid

Posterior marginal for θ1, conditional on each {ψ∗
h} value (weighted)

−14 −12 −10 −8

0.
00

0.
02

0.
04

0.
06

0.
08

D
en

si
ty

θ1

Gianluca Baio ( UCL) Introduction to INLA Bayes 2013, 21 May 2013 39 / 92



INLA — example

5. (Numerically) sum over all the conditional densities to obtain the marginal posterior for
each of the elements θj

Posterior marginal for θ1 : p(θ1 | y)
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INLA — Summary

• The basic idea behind the INLA procedure is simple

– Repeatedly use Laplace approximation and take advantage of computational
simplifications due to the structure of the model

– Use numerical integration to compute the required posterior marginal
distributions

– (If necessary) refine the estimation (eg using a finer grid)
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INLA — Summary

• The basic idea behind the INLA procedure is simple

– Repeatedly use Laplace approximation and take advantage of computational
simplifications due to the structure of the model

– Use numerical integration to compute the required posterior marginal
distributions

– (If necessary) refine the estimation (eg using a finer grid)

• Complications are mostly computational and occur when

– Extending to more than one hyper-parameter
– Markedly non-Gaussian observations
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Using the package R-INLA
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The INLA package for R

Good news is that all the procedures needed to perform INLA are implemented in
a R package. This is effectively made by two components
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The INLA package for R

Good news is that all the procedures needed to perform INLA are implemented in
a R package. This is effectively made by two components

1 The GMRFLib library
– This is a C library for fast and exact simulation of GMRFs, used to perform

• Unconditional simulation of a GMRF;
• Various types of conditional simulation from a GMRF;
• Evaluation of the corresponding log-density;
• Generation of blockupdates in MCMC-algorithms using GMRF-approximations

or auxilliary variables, construction of non-Gaussian approximations to hidden
GMRFs, approximate inference using INLA
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– This is a C library for fast and exact simulation of GMRFs, used to perform

• Unconditional simulation of a GMRF;
• Various types of conditional simulation from a GMRF;
• Evaluation of the corresponding log-density;
• Generation of blockupdates in MCMC-algorithms using GMRF-approximations

or auxilliary variables, construction of non-Gaussian approximations to hidden
GMRFs, approximate inference using INLA

2 The inla program
– A standalone C program that

• Interfaces with GMRFLib
• Performs the relevant computation and returns the results in a standardised way
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The INLA package for R

Good news is that all the procedures needed to perform INLA are implemented in
a R package. This is effectively made by two components

1 The GMRFLib library
– This is a C library for fast and exact simulation of GMRFs, used to perform

• Unconditional simulation of a GMRF;
• Various types of conditional simulation from a GMRF;
• Evaluation of the corresponding log-density;
• Generation of blockupdates in MCMC-algorithms using GMRF-approximations

or auxilliary variables, construction of non-Gaussian approximations to hidden
GMRFs, approximate inference using INLA

2 The inla program
– A standalone C program that

• Interfaces with GMRFLib
• Performs the relevant computation and returns the results in a standardised way

NB: Because the package R-INLA relies on a standalone C program, it is not
available directly from CRAN
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The INLA package for R — Installation

• Visit the website
www.r-inla.org

and follow the instructions

• The website contains source code, examples, papers and reports discussing
the theory and applications of INLA
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The INLA package for R — Installation

• Visit the website
www.r-inla.org

and follow the instructions

• The website contains source code, examples, papers and reports discussing
the theory and applications of INLA

• From R, installation is performed typing
source("http://www.math.ntnu.no/inla/givemeINLA.R")

• Later, you can upgrade the package by typing
inla.upgrade()

• A test-version (which may contain unstable updates/new functions) can be
obtained by typing
inla.upgrade(testing=TRUE)
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The INLA package for R — Installation

• Visit the website
www.r-inla.org

and follow the instructions

• The website contains source code, examples, papers and reports discussing
the theory and applications of INLA

• From R, installation is performed typing
source("http://www.math.ntnu.no/inla/givemeINLA.R")

• Later, you can upgrade the package by typing
inla.upgrade()

• A test-version (which may contain unstable updates/new functions) can be
obtained by typing
inla.upgrade(testing=TRUE)

• R-INLA runs natively under Linux, Windows and Mac and it is possible to do
multi-threading using OpenMP
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The INLA package for R — How does it work?

Input

Produces:

• Input files

• .ini files

Output

Data frame,
formula

INLA
package

Runs the
inla

program

A R object
in the class

inla

Collect
results
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The INLA package for R — Documentation

• There has been a great effort lately in producing quite a lot user-frienly(-ish)
documentation

• Tutorials are (or will shortly be) available on

– Basic INLA (probably later this year)
– SPDE (spatial models based on stochastic partial differential equations)

models
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The INLA package for R — Documentation

• There has been a great effort lately in producing quite a lot user-frienly(-ish)
documentation

• Tutorials are (or will shortly be) available on

– Basic INLA (probably later this year)
– SPDE (spatial models based on stochastic partial differential equations)

models

• Much of the recent development in R-INLA is devoted to extending the
applications of INLA for spatial and spatio-temporal models as well as
producing detailed information

• The website also has a discussion forum and a FAQ page
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Step by step guide to using R-INLA

1. The first thing to do is to specify the model

• For example, assume we have a generic model

yi
iid
∼ p(yi | θi)

ηi = g(θi) = β0 + β1x1i + β2x2i + f(zi)

where

– x = (x1, x2) are observed covariates for which we are assuming a linear effect
on some function g(·) of the parameter θi

– β = (β0, β1, β2) ∼ Normal(0, τ−1
1 ) are unstructured (“fixed”) effects

– z is an index. This can be used to include structured (“random”), spatial,
spatio-temporal effect, etc.

– f ∼ Normal(0,Q−1
f (τ2)) is a suitable function used to model the structured

effects
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Step by step guide to using R-INLA

1. The first thing to do is to specify the model

• For example, assume we have a generic model

yi
iid
∼ p(yi | θi)

ηi = g(θi) = β0 + β1x1i + β2x2i + f(zi)

where

– x = (x1, x2) are observed covariates for which we are assuming a linear effect
on some function g(·) of the parameter θi

– β = (β0, β1, β2) ∼ Normal(0, τ−1
1 ) are unstructured (“fixed”) effects

– z is an index. This can be used to include structured (“random”), spatial,
spatio-temporal effect, etc.

– f ∼ Normal(0,Q−1
f (τ2)) is a suitable function used to model the structured

effects

• As mentioned earlier, this formulation can actually be used to represent quite
a wide class of models!
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Step by step guide to using R-INLA

• The model is translated in R code using a formula

• This is sort of standard in R (you would do pretty much the same for calls to
functions such as lm, or glm, or lmer)

formula = y ∼ x1 + x2 + f(z, model=...)
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Step by step guide to using R-INLA

• The model is translated in R code using a formula

• This is sort of standard in R (you would do pretty much the same for calls to
functions such as lm, or glm, or lmer)

formula = y ∼ x1 + x2 + f(z, model=...)

• The f() function can account for several structured effects

• This is done by specifying a different model

– iid, iid1d, iid2d, iid3d specify random effects
– rw1, rw2, ar1 are smooth effect of covariates or time effects
– seasonal specifies a seasonal effect
– besag models spatially structured effects (CAR)
– generic is a user-defined precision matrix
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Step by step guide to using R-INLA

2. Call the function inla, specifying the data and options (more on this later),
eg

m = inla(formula, data=data.frame(y,x1,x2,z))
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Step by step guide to using R-INLA

2. Call the function inla, specifying the data and options (more on this later),
eg

m = inla(formula, data=data.frame(y,x1,x2,z))

• The data need to be included in a suitable data.frame

• R returns an object m in the class inla, which has some methods available

– summary()

– plot()

• The options let you specify the priors and hyperpriors, together with
additional output
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Step by step guide to using R-INLA

names(m)

[1] "names.fixed" "summary.fixed"

[3] "marginals.fixed" "summary.lincomb"

[5] "marginals.lincomb" "size.lincomb"

[7] "summary.lincomb.derived" "marginals.lincomb.derived"

[9] "size.lincomb.derived" "mlik"

[11] "cpo" "model.random"

[13] "summary.random" "marginals.random"

[15] "size.random" "summary.linear.predictor"

[17] "marginals.linear.predictor" "summary.fitted.values"

[19] "marginals.fitted.values" "size.linear.predictor"

[21] "summary.hyperpar" "marginals.hyperpar"

[23] "internal.summary.hyperpar" "internal.marginals.hyperpar"

[25] "si" "offset.linear.predictor"

[27] "model.spde2.blc" "summary.spde2.blc"

[29] "marginals.spde2.blc" "size.spde2.blc"

[31] "logfile" "misc"

[33] "dic" "mode"

[35] "neffp" "joint.hyper"

[37] "nhyper" "version"

[39] "Q" "graph"

[41] "cpu.used" ".args"

[43] "call" "model.matrix"
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Example — Binary data with individual random effect

First, generate some data from an assumed model

yi ∼ Binomial(πi, Ni), for i = 1, . . . , n = 12

library(INLA)

# Data generation
n=12
Ntrials = sample(c(80:100), size=n, replace=TRUE)
eta = rnorm(n,0,0.5)
prob = exp(eta)/(1 + exp(eta))
y = rbinom(n, size=Ntrials, prob = prob)
data=data.frame(y=y,z=1:n,Ntrials)
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Example — Binary data with individual random effect

data

y z Ntrials
1 50 1 95
2 37 2 97
3 36 3 93
4 47 4 96
5 39 5 80
6 67 6 97
7 60 7 89
8 57 8 84
9 34 9 89
10 57 10 96
11 46 11 87
12 48 12 98
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Example — Binary data with individual random effect

data

y z Ntrials
1 50 1 95
2 37 2 97
3 36 3 93
4 47 4 96
5 39 5 80
6 67 6 97
7 60 7 89
8 57 8 84
9 34 9 89
10 57 10 96
11 46 11 87
12 48 12 98

We want to fit the following model

yi ∼ Binomial(πi, Ni), for i = 1, . . . , n = 12

logit(πi) = α+ f(zi)

α ∼ Normal(0, 1 000) (“fixed” effect)

f(zi) ∼ Normal(0, σ2) (“random” effect)

p(σ2) ∝ σ
−2 = τ (“non-informative” prior)

≈ log σ ∼ Uniform(0,∞)
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Example — Binary data with individual random effect

data

y z Ntrials
1 50 1 95
2 37 2 97
3 36 3 93
4 47 4 96
5 39 5 80
6 67 6 97
7 60 7 89
8 57 8 84
9 34 9 89
10 57 10 96
11 46 11 87
12 48 12 98

We want to fit the following model

yi ∼ Binomial(πi, Ni), for i = 1, . . . , n = 12

logit(πi) = α+ f(zi)

α ∼ Normal(0, 1 000) (“fixed” effect)

f(zi) ∼ Normal(0, σ2) (“random” effect)

p(σ2) ∝ σ
−2 = τ (“non-informative” prior)

≈ log σ ∼ Uniform(0,∞)

This can be done by typing in R

formula = y ∼ f(z,model="iid",
hyper=list(list(prior="flat")))

m=inla(formula, data=data,
family="binomial",
Ntrials=Ntrials,
control.predictor = list(compute = TRUE))

summary(m)
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−2 = τ (“non-informative” prior)
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This can be done by typing in R

formula = y ∼ f(z,model="iid",
hyper=list(list(prior="flat")))
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Example — Binary data with individual random effect

Call:

c("inla(formula = formula, family = \"binomial\", data = data, Ntrials = Ntrials,
"control.predictor = list(compute = TRUE))")

Time used:
Pre-processing Running inla Post-processing Total

0.2258 0.0263 0.0744 0.3264

Fixed effects:

mean sd 0.025quant 0.5quant 0.975quant kld
(Intercept) -0.0021 0.136 -0.272 -0.0021 0.268 0

Random effects:

Name Model
z IID model

Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant

Precision for z 7.130 4.087 2.168 6.186 17.599

Expected number of effective parameters(std dev): 9.494(0.7925)

Number of equivalent replicates : 1.264

Marginal Likelihood: -54.28
CPO and PIT are computed

Posterior marginals for linear predictor and fitted values computed
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Exploring the R-INLA output

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant kld

(Intercept) -0.0021 0.136 -0.272 -0.0021 0.268 0
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Exploring the R-INLA output

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant kld

(Intercept) -0.0021 0.136 -0.272 -0.0021 0.268 0

• For each unstructured (“fixed”) effect, R-INLA reports a set of summary
statistics from the posterior distribution
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Exploring the R-INLA output

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant kld

(Intercept) -0.0021 0.136 -0.272 -0.0021 0.268 0

• For each unstructured (“fixed”) effect, R-INLA reports a set of summary
statistics from the posterior distribution

• The value of the Kullback-Leibler divergence (KLD) describes the difference
between the standard Gaussian and the Simplified Laplace Approximation to
the marginal posterior densities

– Small values indicate that the posterior distribution is well approximated by a
Normal distribution

– If so, the more sophisticated SLA gives a “good” error rate and therefore there
is no need to use the more computationally intensive “full” Laplace
approximation
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Exploring the R-INLA output

Random effects:
Name Model
z IID model

Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant

Precision for z 7.130 4.087 2.168 6.186 17.599

• Also for each hyper-parameter, the summary statistics are reported to
describe the posterior distribution

• NB: INLA reports results on the precision scale (more on this later)
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Exploring the R-INLA output

Expected number of effective parameters(std dev): 9.494(0.7925)
Number of equivalent replicates : 1.264
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Exploring the R-INLA output

Expected number of effective parameters(std dev): 9.494(0.7925)
Number of equivalent replicates : 1.264

• The expected number of effective parameters is basically the number of
independent parameters included in the model

– In a hierarchical model, because of shrinkage, information is shared across
parameters

– Example: in this case there are 14 actual parameters (α, σ2, f(1), . . . , f(12)).
However, because the structured effects are exchangeable (ie correlated) the
“effective” number of parameters is (on average) just 9.5
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Exploring the R-INLA output

Expected number of effective parameters(std dev): 9.494(0.7925)
Number of equivalent replicates : 1.264

• The expected number of effective parameters is basically the number of
independent parameters included in the model

– In a hierarchical model, because of shrinkage, information is shared across
parameters

– Example: in this case there are 14 actual parameters (α, σ2, f(1), . . . , f(12)).
However, because the structured effects are exchangeable (ie correlated) the
“effective” number of parameters is (on average) just 9.5

• The number of equivalent replicates indicates the available information (in
terms of sample size) per effective parameter

– Example: there are 12 data points and on average 9.5 parameters; so each is
estimated using on average 12/9.5 ≈ 1.3 data points

– Low values (with respect to the overall sample size) are indicative of poor fit
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Exploring the R-INLA output

Marginal Likelihood: -54.28
CPO and PIT are computed

• R-INLA can produce two types of “leave-one-out” measures of fit
1 Conditional Predictive Ordinate (CPO): p(yi | y−i)

• “Extreme” values for CPO indicate a surprising observation

2 Probability Integral Transforms (PIT): Pr(ynewi ≤ yi | y−i)
• “Extreme” values for PIT indicate outliers
• A histogram of PIT that does not look Uniformly distributed indicate lack of fit

for the current model
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Exploring the R-INLA output

Marginal Likelihood: -54.28
CPO and PIT are computed

• R-INLA can produce two types of “leave-one-out” measures of fit
1 Conditional Predictive Ordinate (CPO): p(yi | y−i)

• “Extreme” values for CPO indicate a surprising observation

2 Probability Integral Transforms (PIT): Pr(ynewi ≤ yi | y−i)
• “Extreme” values for PIT indicate outliers
• A histogram of PIT that does not look Uniformly distributed indicate lack of fit

for the current model

• If the option
control.compute=list(cpo=TRUE)

is added to the call to the function inla then the resulting object contains
values for CPO and PIT, which can then be post-processed

– NB: for the sake of model checking, it is useful to to increase the accuracy of
the estimation for the tails of the marginal distributions

– This can be done by adding the option

control.inla = list(strategy = "laplace", npoints = 21)

to add more evaluation points (npoints=21) instead of the default
npoints=9
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Exploring the R-INLA output
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Example — Binary data with individual random effect

plot(m)

plot(m,
plot.fixed.effects = TRUE,
plot.lincomb = FALSE,
plot.random.effects = FALSE,
plot.hyperparameters = FALSE,
plot.predictor = FALSE,
plot.q = FALSE,
plot.cpo = FALSE

)

plot(m,single = TRUE)
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PostDens [(Intercept)]

Mean = −0.002 SD = 0.136
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Example — Binary data with individual random effect

plot(m)

plot(m,
plot.fixed.effects = FALSE,
plot.lincomb = FALSE,
plot.random.effects = TRUE,
plot.hyperparameters = FALSE,
plot.predictor = FALSE,
plot.q = FALSE,
plot.cpo = FALSE

)
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Manipulating the results from R-INLA

• The elements of the object m can be used for post-processing

m$summary.fixed

mean sd 0.025quant 0.5quant 0.975quant kld
(Intercept) -0.002092578 0.1360447 -0.2720331 -0.002101465 0.2680023 1.866805e-08

m$summary.random

$z
ID mean sd 0.025quant 0.5quant 0.975quant kld

1 1 0.117716597 0.2130482 -0.29854459 0.116540837 0.54071007 1.561929e-06
2 2 -0.582142549 0.2328381 -1.05855344 -0.575397613 -0.14298960 3.040586e-05
3 3 -0.390419424 0.2159667 -0.82665552 -0.386498698 0.02359256 1.517773e-05

4 4 -0.087199172 0.2174477 -0.51798771 -0.086259111 0.33838724 7.076793e-07
5 5 0.392724605 0.2220260 -0.03217954 0.388462164 0.84160800 1.604348e-05

6 6 -0.353323459 0.2210244 -0.79933142 -0.349483252 0.07088015 1.242953e-05
7 7 -0.145238917 0.2122322 -0.56726042 -0.143798605 0.26859415 2.047815e-06
8 8 0.679294456 0.2279863 0.25076022 0.672226639 1.14699903 4.145645e-05

9 9 -0.214441626 0.2141299 -0.64230245 -0.212274011 0.20094086 4.577080e-06
10 10 0.001634115 0.2131451 -0.41797579 0.001622300 0.42152562 4.356243e-09

11 11 0.001593724 0.2190372 -0.42961274 0.001581019 0.43309253 3.843622e-09
12 12 0.580008923 0.2267330 0.15173745 0.573769187 1.04330359 3.191737e-05
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Manipulating the results from R-INLA

alpha <- m$marginals.fixed[[1]]
plot(inla.smarginal(alpha),t="l")

Marginal posterior: p(α | y)
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Manipulating the results from R-INLA

alpha <- m$marginals.fixed[[1]]
plot(inla.smarginal(alpha),t="l")

inla.qmarginal(0.05,alpha)
[1] -0.2257259

Marginal posterior: p(α | y)
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Manipulating the results from R-INLA

alpha <- m$marginals.fixed[[1]]
plot(inla.smarginal(alpha),t="l")

inla.qmarginal(0.05,alpha)
[1] -0.2257259

inla.pmarginal(-.2257259,alpha)
[1] 0.04999996

Marginal posterior: p(α | y)
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Manipulating the results from R-INLA

alpha <- m$marginals.fixed[[1]]
plot(inla.smarginal(alpha),t="l")

inla.qmarginal(0.05,alpha)
[1] -0.2257259

inla.pmarginal(-.2257259,alpha)
[1] 0.04999996

inla.dmarginal(0,alpha)
[1] 3.055793

Marginal posterior: p(α | y)
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Manipulating the results from R-INLA

alpha <- m$marginals.fixed[[1]]
plot(inla.smarginal(alpha),t="l")

inla.qmarginal(0.05,alpha)
[1] -0.2257259

inla.pmarginal(-.2257259,alpha)
[1] 0.04999996

inla.dmarginal(0,alpha)
[1] 3.055793

inla.rmarginal(4,alpha)
[1] 0.05307452 0.07866796 -0.09931744 -0.02027463
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Example — Binary data with individual random effect

NB: INLA works by default with precisions

plot(m,
plot.fixed.effects = FALSE,
plot.lincomb = FALSE,
plot.random.effects = FALSE,
plot.hyperparameters = TRUE,
plot.predictor = FALSE,
plot.q = FALSE,
plot.cpo = FALSE

)
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Example — Binary data with individual random effect

NB: INLA works by default with precisions

plot(m,
plot.fixed.effects = FALSE,
plot.lincomb = FALSE,
plot.random.effects = FALSE,
plot.hyperparameters = TRUE,
plot.predictor = FALSE,
plot.q = FALSE,
plot.cpo = FALSE

)
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Problem: usually, we want to make inference on more interpretable parameters,
eg standard deviations
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Example — Binary data with individual random effect

• Using some built-in INLA functions

– model$marginals.hyperpar

– inla.expectation

– inla.rmarginal

it is possible to compute the structured variability, for example on the
standard deviation scale, based on nsamples (default=1000) MC simulations
from the estimated precision

s <- inla.contrib.sd(m,nsamples=1000)
s$hyper

mean sd 2.5% 97.5%
sd for z 0.416862 0.1098968 0.2332496 0.6478648
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Example — Binary data with individual random effect

• Using some built-in INLA functions

– model$marginals.hyperpar

– inla.expectation

– inla.rmarginal

it is possible to compute the structured variability, for example on the
standard deviation scale, based on nsamples (default=1000) MC simulations
from the estimated precision

s <- inla.contrib.sd(m,nsamples=1000)
s$hyper

mean sd 2.5% 97.5%
sd for z 0.416862 0.1098968 0.2332496 0.6478648

• The object s contains a vector of simulations from the induced posterior
distribution for the standard deviation scale, than can then be used for plots

hist(s$samples)
plot(density(s$samples,bw=.1),xlab="sigma",main="")
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Example — Binary data with individual random effect

Posterior distribution for σ = τ
− 1
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Example — Binary data with individual random effect

If we wanted to perform MCMC on this model, we could

1 Program it in JAGS/BUGS and save it as model.txt

model {
for (i in 1:n) {

y[i] ∼ dbinom(pi[i],Ntrials[i])
logit(pi[i]) <- alpha+f[i]
f[i] ∼ dnorm(0,tau)

}
alpha ∼ dnorm(0,.001)

log.sigma ∼ dunif(0,10000)
sigma <- exp(log.sigma)

tau <- pow(sigma,-2)
}
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Example — Binary data with individual random effect

If we wanted to perform MCMC on this model, we could

1 Program it in JAGS/BUGS and save it as model.txt

model {
for (i in 1:n) {

y[i] ∼ dbinom(pi[i],Ntrials[i])
logit(pi[i]) <- alpha+f[i]
f[i] ∼ dnorm(0,tau)

}
alpha ∼ dnorm(0,.001)

log.sigma ∼ dunif(0,10000)
sigma <- exp(log.sigma)

tau <- pow(sigma,-2)
}

2 In R, use the library R2jags (or R2WinBUGS) to interface with the MCMC software

library(R2jags)
filein <- "model.txt"

dataJags <- list(y=y,n=n,Ntrials=Ntrials,prec=prec)
params <- c("sigma","tau","f","pi","alpha")

inits <- function(){ list(log.sigma=runif(1),alpha=rnorm(1),f=rnorm(n,0,1)) }
n.iter <- 100000

n.burnin <- 9500
n.thin <- floor((n.iter-n.burnin)/500)
mj <- jags(dataJags, inits, params, model.file=filein,n.chains=2, n.iter, n.burnin,

n.thin, DIC=TRUE, working.directory=working.dir, progress.bar="text")
print(mj,digits=3,intervals=c(0.025, 0.975))
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Example — Binary data with individual random effect

Inference for Bugs model at "model.txt", fit using jags,

2 chains, each with 1e+05 iterations (first 9500 discarded), n.thin = 181
n.sims = 1000 iterations saved (Time to run: 4.918 sec)

mu.vect sd.vect 2.5% 97.5% Rhat n.eff
alpha -0.005 0.146 -0.270 0.292 1.001 1000

f[1] 0.122 0.220 -0.347 0.582 1.001 1000
f[2] -0.564 0.238 -1.051 -0.115 1.008 190

f[3] -0.386 0.229 -0.880 0.050 1.000 1000
f[4] -0.086 0.225 -0.549 0.367 1.002 780

f[5] 0.392 0.227 -0.047 0.828 1.002 870
f[6] -0.351 0.229 -0.805 0.081 1.000 1000
f[7] -0.141 0.221 -0.578 0.286 1.001 1000

f[8] 0.672 0.236 0.246 1.200 1.002 860
f[9] -0.224 0.210 -0.643 0.178 1.000 1000

f[10] 0.016 0.219 -0.396 0.463 1.006 1000
f[11] -0.001 0.221 -0.441 0.416 1.002 780
f[12] 0.585 0.245 0.153 1.093 1.001 1000

sigma 0.414 0.120 0.230 0.693 1.000 1000
tau 7.415 4.546 2.080 18.951 1.000 1000

deviance 72.378 5.497 64.016 84.715 1.000 1000

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 15.1 and DIC = 87.5

DIC is an estimate of expected predictive error (lower deviance is better).

Gianluca Baio ( UCL) Introduction to INLA Bayes 2013, 21 May 2013 67 / 92



Example — Binary data with individual random effect

Structured effects
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Example — Binary data with individual random effect

Posterior distribution for σ = τ
− 1
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Example — Binary data with individual random effect

• R-INLA allows to make predictive inference based on the observed model

• Suppose for example that the (n+ 1)−th value is not (yet) observed for the
response variable y

– NB: for R-INLA, a missing value in the response means no likelihood
contribution
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Example — Binary data with individual random effect

• R-INLA allows to make predictive inference based on the observed model

• Suppose for example that the (n+ 1)−th value is not (yet) observed for the
response variable y

– NB: for R-INLA, a missing value in the response means no likelihood
contribution

• We can code this in R, by augmenting the original dataset
y[n+1] <- NA
Ntrials[n+1] <- sample(c(80:100),size=1,replace=TRUE)
data2 <- data.frame(y=y,z=1:(n+1),Ntrials=Ntrials)

formula2 = y ∼ f(z,model="iid",hyper=list(list(prior="flat")))
m2=inla(formula2,data=data2,

family="binomial",
Ntrials=Ntrials,
control.predictor = list(compute = TRUE))

summary(m2)
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Example — Binary data with individual random effect

Time used:
Pre-processing Running inla Post-processing Total

0.0883 0.0285 0.0236 0.1404
(0.2258) (0.0263) (0.0744) (0.3264)

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant kld

(Intercept) -0.0021 0.136 -0.272 -0.0021 0.268 0
(-0.0021) (0.136) (-0.272) (-0.0021) (0.268) (0)

Random effects:
Name Model

z IID model

Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant

Precision for z 7.130 4.087 2.168 6.186 17.599

(7.130) (4.087) (2.168) (6.168) (17.599)

Expected number of effective parameters(std dev): 9.494(0.7925)
Number of equivalent replicates : 1.264

Marginal Likelihood: -54.28
CPO and PIT are computed

Posterior marginals for linear predictor and fitted values computed
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Example — Binary data with individual random effect

• The estimated value for the predictive distribution can be retrieved using the
following code

pred <- m2$marginals.linear.predictor[[n+1]]
plot(pred,xlab="",ylab="Density")
lines(inla.smarginal(pred))

which can be used to generate, eg a graph of the predictive density
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Specifying the model — options

• It is possible to specify link functions that are different from the default used
by R-INLA

• This is done by specifying suitable values for the option control.family to
the call to inla, eg

m = inla(formula, data=data, family="binomial", Ntrials=Ntrials,
control.predictor=list(compute=TRUE),
control.family = list(link = "probit"))
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Specifying the model — options

• It is possible to specify link functions that are different from the default used
by R-INLA

• This is done by specifying suitable values for the option control.family to
the call to inla, eg

m = inla(formula, data=data, family="binomial", Ntrials=Ntrials,
control.predictor=list(compute=TRUE),
control.family = list(link = "probit"))

• More details are available on the R-INLA website:

– http://www.r-inla.org/models/likelihoods
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Specifying the model — options

• R-INLA has a set of default priors for the different components of the
LGM/GMRF

• For example, in a standard hierarchical formulation, R-INLA assumes

– Unstructured (“fixed”) effects: β ∼ Normal(0, 0.001)
– Structured (“random”) effects: f(zi) ∼ Normal(0, τ )

Structured (“random”) effects: log τ ∼ logGamma(1, 0.00005)

• NB: It is possible to see the default settings using the function

inla.model.properties(<name>, <section>)
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Specifying the model — options

• R-INLA has a set of default priors for the different components of the
LGM/GMRF

• For example, in a standard hierarchical formulation, R-INLA assumes

– Unstructured (“fixed”) effects: β ∼ Normal(0, 0.001)
– Structured (“random”) effects: f(zi) ∼ Normal(0, τ )

Structured (“random”) effects: log τ ∼ logGamma(1, 0.00005)

• NB: It is possible to see the default settings using the function

inla.model.properties(<name>, <section>)

• However, there is a wealth of possible formulations that the user can specify,
especially for the hyperpriors

• More details are available on the R-INLA website:

– http://www.r-inla.org/models/likelihoods

– http://www.r-inla.org/models/latent-models

– http://www.r-inla.org/models/priors
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Specifying the model — options

Models for the observed data

Model Name
Negative Binomial nbinomial
Poisson poisson
Binomial binomial
Clustered Binomial cbinomial
Gaussian gaussian
Skew Normal sn
Laplace laplace
Student-t T
Gaussian model for stochastic volatility stochvol
Student-t model for stochastic volatility stochvol.t
NIG model for stochastic volatility stochvol.nig
Zero inflated Poisson zeroinflated.poisson.x (x=0,1,2)
Zero inflated Binomial zeroinflated.binomial.x (x=0,1)
Zero inflated negative Binomial zeroinflated.nbinomial.x (x=0,1,2)
Zero inflated beta binomial (type 2) zeroinflated.betabinomial.2
Generalised extreme value distribution (GEV) gev
Beta beta
Gamma gamma
Beta-Binomial betabinomial
Logistic distribution logistic
Exponential (Survival models) exponential
Weibull (Survival model) weibull
LogLogistic (Survival model) loglogistic
LogNormal (Survival model) lognormal
Cox model (Survival model) coxph
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Specifying the model — options

Models for the GMRF

Model Name

Independent random variables iid
Linear linear
Random walk of order 1 rw1
Random walk of order 2 rw2
Continuous random walk of order 2 crw2
Model for seasonal variation seasonal
Model for spatial effect besag
Model for spatial effect besagproper
Model for weighted spatial effects besag2
Model for spatial effect + random effect bym
Autoregressive model of order 1 ar1
Autoregressive model of order p ar
The Ornstein-Uhlenbeck process ou
User defined structure matrix, type 0 generic0
User defined structure matrix, type1 generic1
User defined structure matrix, type2 generic2
Model for correlated effects with Wishart prior (dimen-
sion 1, 2, 3, 4 and 5).

iid1d, iid2d, iid3d, iid4d, iid5d

(Quite) general latent model z
Random walk of 2nd order on a lattice rw2d
Gaussian field with Matern covariance function matern2d
Classical measurement error model mec
Berkson measurement error model meb
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Specifying the model — options

Models for the hyper-parameters

Model Name
Normal distribution normal, gaussian
Log-gamma distribution loggamma
Improper flat prior flat
Truncated Normal distribution logtnormal, logtgaussian
Improper flat prior on the log scale logflat
Improper flat prior on the 1/ log scale logiflat
Wishart prior wishart
Beta for correlations betacorrelation
Logit of a Beta logitbeta
Define your own prior expression:
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Internal vs user scale

• Hyper-parameters (eg correlation coefficients ρ or precisions τ) are
represented internally using a suitable transformation, eg

ψ1 = log(τ)

or
ψ2 = log

(
1 + ρ

1− ρ

)

to improve symmetry and approximate Normality
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Internal vs user scale

• Hyper-parameters (eg correlation coefficients ρ or precisions τ) are
represented internally using a suitable transformation, eg

ψ1 = log(τ)

or
ψ2 = log

(
1 + ρ

1− ρ

)

to improve symmetry and approximate Normality

• Initial values are given on the internal scale

• Priors are also defined on the internal scale

• So, when specifying custom values, care is needed!
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Specifying the prior (1)

Consider the model

yi | θi, σ
2 ∼ Normal(θi, σ

2)

θi = α+ βxi

α, β
iid
∼ Normal(0, 0.001)

log τ = − logσ2 ∼ logGamma(1, 0.01)

n=100
a = 1; b = 1
x = rnorm(n)
eta = a + b*x
tau = 100
scale = exp(rnorm(n))
prec = scale*tau
y = rnorm(n, mean = eta, sd = 1/sqrt(prec))
data = list(y=y, x=x)
formula = y ∼ 1 + x
result = inla(formula, family = "gaussian", data = data,

control.family = list(hyper = list(
prec = list(prior = "loggamma",param = c(1,0.01),initial = 2))),

scale=scale, keep=TRUE)
summary(result)
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Specifying the prior (1)

Time used:
Pre-processing Running inla Post-processing Total

0.0776 0.0828 0.0189 0.1793

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant kld

(Intercept) 1.0013 0.0074 0.9868 1.0013 1.0158 0
x 0.9936 0.0075 0.9788 0.9936 1.0083 0

The model has no random effects

Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant

Precision for the Gaussian observations 108.00 15.34 80.60 107.09 140.74

Expected number of effective parameters(std dev): 2.298(0.0335)
Number of equivalent replicates : 43.52

Marginal Likelihood: 83.86
CPO and PIT are computed
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Specifying the prior (2)

Consider the model

yi | µ, σ
2 ∼ Normal(µ, σ2)

µ ∼ Normal(0, 0.001)

log τ = − logσ2 ∼ Normal(0, 1)

n = 10
y = rnorm(n)
formula = y ∼ 1
result = inla(formula, data = data.frame(y),

control.family = list(hyper = list(
prec = list(prior = "normal",param = c(0,1))))

)
summary(result)
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Specifying the prior (2)

Consider the model

yi | µ, σ
2 ∼ Normal(µ, σ2)

µ ∼ Normal(0, 0.001)

log τ = − logσ2 ∼ Normal(0, 1)

n = 10
y = rnorm(n)
formula = y ∼ 1
result = inla(formula, data = data.frame(y),

control.family = list(hyper = list(
prec = list(prior = "normal",param = c(0,1))))

)
summary(result)

• NB: INLA thinks in terms of LGMs and GMRFs

• Thus, the common mean for all the observations is specified in terms of a
regression!
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Specifying the prior (2)

Time used:
Pre-processing Running inla Post-processing Total

0.0740 0.0214 0.0221 0.1175

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant kld

(Intercept) -0.3853 0.4077 -1.1939 -0.3853 0.4237 0

The model has no random effects

Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant

Precision for the Gaussian observations 0.6512 0.268 0.2590 0.6089 1.2919

Expected number of effective parameters(std dev): 1.00(0.00)
Number of equivalent replicates : 9.999

Marginal Likelihood: -17.30
CPO and PIT are computed

Gianluca Baio ( UCL) Introduction to INLA Bayes 2013, 21 May 2013 82 / 92



Specifying the prior (2)

Running the model in JAGS

model {
for (i in 1:n) {

y[i] ∼ dnorm(mu,tau)

}
mu ∼ dnorm(0,0.001)

log.tau ∼ dnorm(0,1)
tau <- exp(log.tau)

}

produces similar results

Inference for Bugs model at "modelHyperPriorNormal.txt", fit using jags,
2 chains, each with 1e+05 iterations (first 9500 discarded), n.thin = 181
n.sims = 1000 iterations saved

mu.vect sd.vect 2.5% 97.5% Rhat n.eff
mu -0.384 0.447 -1.293 0.555 1.000 1000

tau 0.642 0.258 0.233 1.240 1.006 1000
deviance 34.507 1.930 32.645 39.897 1.002 650

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)

pD = 1.9 and DIC = 36.4
DIC is an estimate of expected predictive error (lower deviance is better).
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Specifying the prior (2)

• We can also assume different priors for the unstructured (“fixed”) effects, eg
suppose we want to fit the model

yi | µ, σ
2 ∼ Normal(µ, σ2)

µ ∼ Normal(10, 4)

log τ = − log σ2 ∼ Normal(0, 1)
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Specifying the prior (2)

• We can also assume different priors for the unstructured (“fixed”) effects, eg
suppose we want to fit the model

yi | µ, σ
2 ∼ Normal(µ, σ2)

µ ∼ Normal(10, 4)

log τ = − log σ2 ∼ Normal(0, 1)

• This can be done by using the option control.fixed, eg

result = inla(formula, data = data.frame(y),
control.family = list(hyper = list(

prec = list(prior = "normal",param = c(0, 1))))
control.fixed=list(

mean.intercept=10,prec.intercept=4)
)
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Specifying the prior (2)

• We can also assume different priors for the unstructured (“fixed”) effects, eg
suppose we want to fit the model

yi | µ, σ
2 ∼ Normal(µ, σ2)

µ ∼ Normal(10, 4)

log τ = − log σ2 ∼ Normal(0, 1)

• This can be done by using the option control.fixed, eg

result = inla(formula, data = data.frame(y),
control.family = list(hyper = list(

prec = list(prior = "normal",param = c(0, 1))))
control.fixed=list(

mean.intercept=10,prec.intercept=4)
)

• NB: If the model contains fixed effects for some covariates, non-default priors
can be included using the option

control.fixed=list(mean=list(value),prec=list(value))
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Specifying the prior (2)

Time used:
Pre-processing Running inla Post-processing Total

0.0747 0.0311 0.0164 0.1222

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant kld

(Intercept) 9.5074 0.502 8.5249 9.5067 10.4935 0
-0.3853 0.407 -1.1939 -0.3853 0.4237 0

The model has no random effects

Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant

Precision for the Gaussian observations 0.0218 0.007 0.0105 0.0208 0.0391
0.6512 0.268 0.2590 0.6089 1.2919

Expected number of effective parameters(std dev): 0.0521(0.0129)
1.0000(0.0000)

Number of equivalent replicates : 192.05
9.9999

Marginal Likelihood: 153.84
-17.30

CPO and PIT are computed
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Improving the estimation of the hyperparameters

• As mentioned earlier, for computational reasons, by default INLA uses a
relatively rough grid to estimate the marginal posterior for the
hyperparameters p(ψ | y)

• This is generally good enough, but the procedure can be refined

Gianluca Baio ( UCL) Introduction to INLA Bayes 2013, 21 May 2013 86 / 92



Improving the estimation of the hyperparameters

• As mentioned earlier, for computational reasons, by default INLA uses a
relatively rough grid to estimate the marginal posterior for the
hyperparameters p(ψ | y)

• This is generally good enough, but the procedure can be refined

• After the model has been estimated using the standard procedure, it is
possible to increase precision in the estimation by re-fitting it using the
command

inla.hyperpar(m, options)

• This modifies the estimation for the hyperparameters and (potentially, but
not necessarily!) that for the parameters
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A more complex model

• Consider the classic model for seizure counts in a RCT of anti-conversant
therapy in epilepsy (“Epil” in the BUGS manual)

• The data are as follows

Patient Visit 1 Visit 2 Visit 3 Visit 4 Trt Base Age
1 5 3 3 3 0 11 31
2 3 5 3 3 0 11 30
. . . . . . . . . . . . . . . . . . . . . . . .
59 1 4 3 2 1 12 37

• We replicate the model presented in the BUGS manual, which uses slightly
modified version of the covariates
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A more complex model

We model

yjk ∼ Poisson(µjk)

log(µjk) = α0 + α1 log(Bj/4) + α2Trtj +

α3Trtj × log(Bj/4) + α4 log(Agej) +

α5V 4k + uj + vik

α0, . . . α5
iid
∼ Normal(0, τα), τα known

uj ∼ Normal(0, τu), τu ∼ Gamma(au, bu)

vjk ∼ Normal(0, τv), τv ∼ Gamma(av, bv)
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A more complex model
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log(µjk) = α0 + α1 log(Bj/4) + α2Trtj +

α3Trtj × log(Bj/4) + α4 log(Agej) +

α5V 4k + uj + vik

α0, . . . α5
iid
∼ Normal(0, τα), τα known

uj ∼ Normal(0, τu), τu ∼ Gamma(au, bu)

vjk ∼ Normal(0, τv), τv ∼ Gamma(av, bv)

α = (α0, . . . α5) indicates a set of “fixed” effects for the relevant (re-scaled)
covariates
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α3Trtj × log(Bj/4) + α4 log(Agej) +
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iid
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uj ∼ Normal(0, τu), τu ∼ Gamma(au, bu)
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α = (α0, . . . α5) indicates a set of “fixed” effects for the relevant (re-scaled)
covariates

uj is an individual “random” effect
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A more complex model

We model

yjk ∼ Poisson(µjk)

log(µjk) = α0 + α1 log(Bj/4) + α2Trtj +

α3Trtj × log(Bj/4) + α4 log(Agej) +

α5V 4k + uj + vik

α0, . . . α5
iid
∼ Normal(0, τα), τα known

uj ∼ Normal(0, τu), τu ∼ Gamma(au, bu)

vjk ∼ Normal(0, τv), τv ∼ Gamma(av, bv)

α = (α0, . . . α5) indicates a set of “fixed” effects for the relevant (re-scaled)
covariates

uj is an individual “random” effect

vjk is a subject by visit “random” effect, which accounts for extra-Poisson
variability
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A more complex model

data(Epil)
head(Epil,n=3)

y Trt Base Age V4 rand Ind
1 5 0 11 31 0 1 1
2 3 0 11 31 0 2 1
3 3 0 11 31 0 3 1

formula <- y ∼ log(Base/4) + Trt +
I(Trt * log(Base/4)) + log(Age) + V4 +
f(Ind, model = "iid") + f(rand, model="iid")

m <- inla(formula, family="poisson", data = Epil)

• NB: The variable Ind indicates the individual random effect uj , while the
variable rand is used to model the subject by visit random effect vjk

• Interactions can be indicated in the R formula using the notation

I(var1 * var2)

• The model assumes that the two structured effects are independent. This can
be relaxed and a joint model can be used instead
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A more complex model
Pre-processing Running inla Post-processing Total

0.3672 0.2780 0.1276 0.7728

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant kld

(Intercept) -1.3877 1.2107 -3.7621 -1.3913 1.0080 0.0055
log(Base/4) 0.8795 0.1346 0.6144 0.8795 1.1447 0.0127
Trt -0.9524 0.4092 -1.7605 -0.9513 -0.1498 0.0021
I(Trt * log(Base/4)) 0.3506 0.2081 -0.0586 0.3504 0.7611 0.0011
log(Age) 0.4830 0.3555 -0.2206 0.4843 1.1798 0.0007
V4 -0.1032 0.0853 -0.2705 -0.1032 0.0646 0.0003

Random effects:
Name Model
Ind IID model
rand IID model

Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant

Precision for Ind 4.635 1.343 2.591 4.436 7.808
Precision for rand 8.566 2.115 5.206 8.298 13.458

Expected number of effective parameters(std dev): 118.97(8.586)
Number of equivalent replicates : 1.984

Marginal Likelihood: -670.55

Gianluca Baio ( UCL) Introduction to INLA Bayes 2013, 21 May 2013 90 / 92



A more complex model
Pre-processing Running inla Post-processing Total

0.3672 0.2780 0.1276 0.7728
(MCMC: approximately 30 mins)

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant kld

(Intercept) -1.3877 1.2107 -3.7621 -1.3913 1.0080 0.0055
log(Base/4) 0.8795 0.1346 0.6144 0.8795 1.1447 0.0127
Trt -0.9524 0.4092 -1.7605 -0.9513 -0.1498 0.0021
I(Trt * log(Base/4)) 0.3506 0.2081 -0.0586 0.3504 0.7611 0.0011
log(Age) 0.4830 0.3555 -0.2206 0.4843 1.1798 0.0007
V4 -0.1032 0.0853 -0.2705 -0.1032 0.0646 0.0003

Random effects:
Name Model
Ind IID model
rand IID model

Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant

Precision for Ind 4.635 1.343 2.591 4.436 7.808
Precision for rand 8.566 2.115 5.206 8.298 13.458

Expected number of effective parameters(std dev): 118.97(8.586)
Number of equivalent replicates : 1.984

Marginal Likelihood: -670.55
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Conclusions

• Integrated Nested Laplace Approximation is a very effective tool to estimate
LGMs

– Estimation time can be much lower than for standard MCMC
– Precision of estimation is usually higher than for standard MCMC
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– Precision of estimation is usually higher than for standard MCMC

• MCMC still provides a slightly more flexible approach

– Virtually any model can be fit using JAGS/BUGS
– The range of priors available is wider in an MCMC setting than in INLA

– Documentation and examples is more extensive for standard MCMC models
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Conclusions

• Integrated Nested Laplace Approximation is a very effective tool to estimate
LGMs

– Estimation time can be much lower than for standard MCMC
– Precision of estimation is usually higher than for standard MCMC

• MCMC still provides a slightly more flexible approach

– Virtually any model can be fit using JAGS/BUGS
– The range of priors available is wider in an MCMC setting than in INLA

– Documentation and examples is more extensive for standard MCMC models

• Nevertheless, INLA proves to be a very flexible tool, which is able to fit a very
wide range of models

– Generalised linear (mixed) models
– Log-Gaussian Cox processes
– Survival analysis
– Spline smoothing
– Spatio-temporal models

• The INLA setup can be highly specialised (choice of data models, priors and
hyperpriors) although this is a bit less intuitive than (most) MCMC models
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Thank you!
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