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Outline of presentation &

® 9.00 — 9.45: (Quick & moderately clean) introduction to Bayesian
computation
- MCMC
Latent Gaussian models
Gaussian Markov Random Fields
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Outline of presentation &

@ 9.00 — 9.45: (Quick & moderately clean) introduction to Bayesian
computation

- MCMC
— Latent Gaussian models
— Gaussian Markov Random Fields

@® 9.45 — 10.00: Coffee break
© 10.00 — 10.45: Introduction to INLA

— Basic ideas
— Some details
— A simple example

® 10.45 — 11.00: Coffee break
® 11.00 — 12.00: Using the package R-INLA

— How does it work?
— Some simple examples
— (Slightly) more complex examples
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(Quick & moderately clean)
introduction to Bayesian
computation
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Bayesian computation &

o In a (very small!) nutshell, Bayesian inference boils down to the computation
of posterior and/or predictive distributions

- p(y | 0)p(0)

pf]y) = [p(y | 0)p(6)dd Ply

“ly) = / p(y™ | 0)p(6 | y)do
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Bayesian computation &

o In a (very small!) nutshell, Bayesian inference boils down to the computation
of posterior and/or predictive distributions

- p(y | 0)p(0)

p(@|y) = W Py ly) = /P(y* | 0)p(6 | y)do

e Since the advent of simulation-based techniques (notably MCMC), Bayesian
computation has enjoyed incredible development

e This has certainly been helped by dedicated software (eg BUGS and then
WinBUGS, OpenBUGS, JAGS)

e MCMC methods are very general and can effectively be applied to “any”
model
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Bayesian computation &

o In a (very small!) nutshell, Bayesian inference boils down to the computation
of posterior and/or predictive distributions

ply | 6)p(0)

p(0]y) = W p(y

“ly) = /p(y* | 0)p(6 | y)do

e Since the advent of simulation-based techniques (notably MCMC), Bayesian
computation has enjoyed incredible development

e This has certainly been helped by dedicated software (eg BUGS and then
WinBUGS, OpenBUGS, JAGS)

e MCMC methods are very general and can effectively be applied to “any”
model

e However:

— Even if in theory, MCMC can provide (nearly) exact inference, given perfect
convergence and MC error — 0, in practice, this has to be balanced with
model complexity and running time

— This is particularly an issue for problems characterised by large data or very
complex structure (eg hierarchical models)
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MCMC — Gibbs sampling &

e The objective is to build a Markov Chain (MC) that converges to the desired
target distribution p (eg the unknown posterior distribution of some
parameter of interest)

e Usually easy to create a MC, under mild “regularity conditions”
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MCMC — Gibbs sampling &

e The objective is to build a Markov Chain (MC) that converges to the desired

target distribution p (eg the unknown posterior distribution of some
parameter of interest)

e Usually easy to create a MC, under mild “regularity conditions”
e The Gibbs sampling (GS) is one of the most popular schemes for MCMC
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MCMC — Gibbs sampling &

e The objective is to build a Markov Chain (MC) that converges to the desired
target distribution p (eg the unknown posterior distribution of some
parameter of interest)

e Usually easy to create a MC, under mild “regularity conditions”

e The Gibbs sampling (GS) is one of the most popular schemes for MCMC

1. Select a set of initial values (050),950), ce G(JO))
2. Sample 6" from the conditional distribution p(6: | 65,6, ... 6\ )
Sample 0&1) from the conditional distribution p(02 | 9§1>, 0;0), . ,H(JO), y)

Sample 031) from the conditional distribution p(0 | 051), 0;1), . ,G(Jl_)l,y)
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MCMC — Gibbs sampling &

e The objective is to build a Markov Chain (MC) that converges to the desired
target distribution p (eg the unknown posterior distribution of some
parameter of interest)

e Usually easy to create a MC, under mild “regularity conditions”

e The Gibbs sampling (GS) is one of the most popular schemes for MCMC

1. Select a set of initial values (050),950), ce O(JO))
2. Sample 6" from the conditional distribution p(6: | 65,6, ... 6\ )
Sample 0;1) from the conditional distribution p(02 | 9§1>, 0;0), . ,930), y)

Sample O(Jl) from the conditional distribution p(0 | 051), 0;1), . ,O(Jl_)l,y)

3. Repeat step 2. for S times until convergence is reached to the target
distribution p(0 | y)

4. Use the sample from the target distribution to compute all relevant statistics:
(posterior) mean, variance, credibility intervals, etc.

e If the full conditionals are not readily available, they need to be estimated
(eg via Metropolis-Hastings or slice sampling) before applying the GS
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MCMC — convergence

After 10 iterations

~ 10

© -

o

=]

Al <

o -

~ o
T T T T T T
-2 0 2 4 6 8

K

Introduction to INLA



MCMC — convergence

After 30 iterations
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MCMC — convergence

After 1000 iterations
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MCMC — convergence
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MCMC — convergence

Uncentred model Centred model
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e Formal assessment of convergence: potential scale reduction

Var(dy, | y)
W (6k)

=5
I

aio ((UCL) Introduction to INLA



MCMC — autocorrelation

Autocorrelation function for a — Uncentred model Autocorrelation function for a — Centred model
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MCMC — brute force

Uncentred model with thinning Autocorrelation function for a — Uncentred model with thinning
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MCMC — pros & cons &

e “Standard” MCMC sampler are generally easy-ish to program and are in fact
implemented in readily available software

e However, depending on the complexity of the problem, their efficiency might
be limited
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MCMC — pros & cons &

e “Standard” MCMC sampler are generally easy-ish to program and are in fact
implemented in readily available software

e However, depending on the complexity of the problem, their efficiency might
be limited

e Possible solutions
@ More complex model specification

e Blocking
e Overparameterisation
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MCMC — pros & cons &

e “Standard” MCMC sampler are generally easy-ish to program and are in fact
implemented in readily available software

e However, depending on the complexity of the problem, their efficiency might
be limited

e Possible solutions
@ More complex model specification

e Blocking
e Overparameterisation

@® More complex sampling schemes

e Hamiltonian Monte Carlo
® No U-turn sampling (eg stan — more on this later!)
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MCMC — pros & cons

e “Standard” MCMC sampler are generally easy-ish to program and are in fact
implemented in readily available software

e However, depending on the complexity of the problem, their efficiency might
be limited

e Possible solutions
@ More complex model specification

e Blocking
e Overparameterisation

@® More complex sampling schemes

e Hamiltonian Monte Carlo
® No U-turn sampling (eg stan — more on this later!)

© Alternative methods of inference

e Approximate Bayesian Computation (ABC)
e INLA
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e “Standard” MCMC sampler are generally easy-ish to program and are in fact
implemented in readily available software

e However, depending on the complexity of the problem, their efficiency might
be limited

e Possible solutions
@ More complex model specification

e Blocking
e Overparameterisation

@® More complex sampling schemes

e Hamiltonian Monte Carlo
® No U-turn sampling (eg stan — more on this later!)

© Alternative methods of inference

e Approximate Bayesian Computation (ABC)
e INLA
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Basics of INLA

The basic ideas revolve around

e Formulating the model using a specific characterisation
— All models that can be formulated in this way have certain features in
common, which facilitate the computational aspects

— The characterisation is still quite general and covers a wide range of possible
models (more on that later!)

— NB: This implies less flexibility with respect to MCMC — but in many cases
this is not a huge limitation!
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Basics of INLA

The basic ideas revolve around

e Formulating the model using a specific characterisation
— All models that can be formulated in this way have certain features in
common, which facilitate the computational aspects

— The characterisation is still quite general and covers a wide range of possible
models (more on that later!)

— NB: This implies less flexibility with respect to MCMC — but in many cases
this is not a huge limitation!

e Use some basic probability conditions to approximate the relevant
distributions
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Basics of INLA

The basic ideas revolve around

e Formulating the model using a specific characterisation
— All models that can be formulated in this way have certain features in
common, which facilitate the computational aspects

— The characterisation is still quite general and covers a wide range of possible
models (more on that later!)

— NB: This implies less flexibility with respect to MCMC — but in many cases
this is not a huge limitation!

e Use some basic probability conditions to approximate the relevant
distributions

e Compute the relevant quantities typically using numerical methods

Gianluca Baio ( UCL) Introduction to INLA



Latent Gaussian models (LGMs) &

e The general problem of (parametric) inference is posited by assuming a
probability model for the observed data, as a function of some relevant

parameters
n

i=1
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Latent Gaussian models (LGMs) &

e The general problem of (parametric) inference is posited by assuming a
probability model for the observed data, as a function of some relevant

parameters
n

i=1

e Often (in fact for a surprisingly large range of models!), we can assume that
the parameters are described by a Gaussian Markov Random Field
(GMRF)

0 | ¢ ~ Normal(0, X (v)))
0 L 6, | O_iy

where
— The notation “—Im” indicates all the other elements of the parameters vector,
excluding elements [ and m
— The covariance matrix 3 depends on some hyper-parameters 1

Gianluca Baio ( UCL) Introduction to INLA



Latent Gaussian models (LGMs) &

e The general problem of (parametric) inference is posited by assuming a
probability model for the observed data, as a function of some relevant

parameters
n

i=1

e Often (in fact for a surprisingly large range of models!), we can assume that
the parameters are described by a Gaussian Markov Random Field
(GMRF)

0 | ¢ ~ Normal(0, X (v)))
O 1L 0y, | O,
where
— The notation “—Im” indicates all the other elements of the parameters vector,

excluding elements [ and m
— The covariance matrix 3 depends on some hyper-parameters 1

e This kind of models is often referred to as Latent Gaussian models
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LGMs as a general framework &

e In general, we can partition ¢ = (11, 1)3) and re-express a LGM as

Y~ p¥) (“hyperprior”)
0y ~ p0]¢)=Normal(0,S(1))  (“GMRF prior")
y|0,¢ ~ Hp(yl | 0,12) (“data model")

ie 11 are the hyper-parameters and v, are nuisance parameters
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LGMs as a general framework &

e In general, we can partition 1) = (1)1, 2) and re-express a LGM as

Y~ p¥) (“hyperprior”)
0y ~ p0]¢)=Normal(0,S(1))  (“GMRF prior")
y|0,¢ ~ Hp(yl | 0,12) (“data model")

ie 11 are the hyper-parameters and v, are nuisance parameters

e The dimension of 8 can be very large (eg 102-10°)

e Conversely, because of the conditional independence properties, the
dimension of 1) is generally small (eg 1-5)
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LGMs as a general framework &

e A very general way of specifying the problem is by modelling the mean for
the ¢-th unit by means of an additive linear predictor, defined on a suitable
scale (e.g. logistic for binomial data)

M L
=+ Z Brmami + Z fi(zi)
m=1 =1

where
— « is the intercept;
- B=(B1,...,B8m) quantify the effect of @ = (z1,...,2zn) on the response;
- F={A0),..., fu(-)} is a set of functions defined in terms of some covariates
z=(z1,...,2L)

and then assume

0 = (a, B, f) ~ GMRF(¢)
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LGMs as a general framework &

e A very general way of specifying the problem is by modelling the mean for
the ¢-th unit by means of an additive linear predictor, defined on a suitable
scale (e.g. logistic for binomial data)

M L
N =a+ Z BmTmi + Z fi(zi)
m=1 =1

where
— « is the intercept;
- B=(B1,...,B8m) quantify the effect of @ = (z1,...,2zn) on the response;
- F={A0),..., fu(-)} is a set of functions defined in terms of some covariates
z=(z1,...,2L)

and then assume

0 = (a, B, f) ~ GMRF(¢)

e NB: This of course implies some form of Normally-distributed marginals for

o, and f
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LGMs as a general framework — examples &

Upon varying the form of the functions f(-), this formulation can accommodate a
wide range of models
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LGMs as a general framework — examples &

Upon varying the form of the functions f(-), this formulation can accommodate a
wide range of models

e Standard regression
- fi(-) = NULL

Gianluca Baio ( UCL) Introduction to INLA



LGMs as a general framework — examples &

wide range of models

e Standard regression
- fi(-) = NULL

e Hierarchical models
- fi(:) ~ Normal(0, 0'%)
o? | 9 ~ some common distribution

Upon varying the form of the functions f(-), this formulation can accommodate a

(Exchangeable)
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LGMs as a general framework — examples &

Upon varying the form of the functions f;(-), this formulation can accommodate a
wide range of models

e Standard regression
- fi(-) = NULL

e Hierarchical models

= fi(-) ~ Normal(0, %) (Exchangeable)
o? | 9 ~ some common distribution

e Spatial and spatio-temporal models

— Two components: fi(-) ~ CAR (Spatially structured effects)
f2(-) ~ Normal(0,57,)  (Unstructured residual)
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LGMs as a general framework — examples &

Upon varying the form of the functions f;(-), this formulation can accommodate a
wide range of models

e Standard regression
- fi(-) = NULL

e Hierarchical models

= fi(-) ~ Normal(0, %) (Exchangeable)
a? | 9 ~ some common distribution

e Spatial and spatio-temporal models

— Two components: fi(-) ~ CAR (Spatially structured effects)
f2(-) ~ Normal(0,57,)  (Unstructured residual)

e Spline smoothing

- fil) ~ AR(¢,02)

Gianluca Baio ( UCL) Introduction to INLA



LGMs as a general framework — examples &

Upon varying the form of the functions f;(-), this formulation can accommodate a
wide range of models

e Standard regression
- fi(-) = NULL

Hierarchical models

= fi(-) ~ Normal(0, %) (Exchangeable)
o']% | 9 ~ some common distribution

Spatial and spatio-temporal models

— Two components: fi(-) ~ CAR (Spatially structured effects)
f2(-) ~ Normal(0,57,)  (Unstructured residual)

Spline smoothing

- fil) ~ AR(¢,02)

Survival models / logGaussian Cox Processes

— More complex specification in theory, but relatively easy to fit within the INLA
framework!
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Gaussian Markov Random Field &

In order to preserve the underlying conditional independence structure in a GMRF,
it is necessary to constrain the parameterisation
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Gaussian Markov Random Field &

In order to preserve the underlying conditional independence structure in a GMRF,
it is necessary to constrain the parameterisation

e Generally, it is complicated to do it in terms of the covariance matrix 3

— Typically, 3 is dense (ie many of the entries are non-zero)
— If it happens to be sparse, this implies (marginal) independence among the
relevant elements of & — this is generally too stringent a requirement!
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Gaussian Markov Random Field

In order to preserve the underlying conditional independence structure in a GMRF,
it is necessary to constrain the parameterisation

e Generally, it is complicated to do it in terms of the covariance matrix 3
— Typically, 3 is dense (ie many of the entries are non-zero)
— If it happens to be sparse, this implies (marginal) independence among the
relevant elements of & — this is generally too stringent a requirement!

o Conversely, it is much simpler when using the precision matrix Q =: X!
— As it turns out, it can be shown that

01J.L0m|9_lm<:>le:0

— Thus, under conditional independence (which is a less restrictive constraint),
the precision matrix is typically sparse

— We can use existing numerical methods to deal with sparse matrices (eg the R
package Matrix)

— Most computations in GMRFs are performed in terms of computing Cholesky's
factorisations
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Precision matrix and conditional independence &

1300000 1400000 1500000 1600000
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Precision matrix and conditional independence

1300000 1400000 1500000 1600000
| 1 | 1

1200000
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Precision matrix and conditional independence &
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MCMC and LGMs &

e (Standard) MCMC methods tend to perform poorly when applied to
(non-trivial) LGMs. This is due to several factors
— The components of the latent Gaussian field € tend to be highly correlated,
thus impacting on convergence and autocorrelation
— Especially when the number of observations is large, 6 and ) also tend to be
highly correlated

p=0.95 p=0.20
02 02

01 01
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MCMC and LGMs &

e (Standard) MCMC methods tend to perform poorly when applied to
(non-trivial) LGMs. This is due to several factors
— The components of the latent Gaussian field € tend to be highly correlated,
thus impacting on convergence and autocorrelation
— Especially when the number of observations is large, 6 and ) also tend to be
highly correlated

p=10.95 p=0.20
02 02

01 01

e Again, blocking and overparameterisation can alleviate, but rarely eliminate
the problem
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Summary so far &

e Bayesian computation (especially for LGMs) is in general difficult
o MCMC can be efficiently used in many simple cases, but becomes a bit
trickier for complex models

— lIssues with convergence
— Time to run can be very long
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Summary so far &

Bayesian computation (especially for LGMs) is in general difficult

o MCMC can be efficiently used in many simple cases, but becomes a bit
trickier for complex models
— Issues with convergence
— Time to run can be very long

A wide class of statistical models can be represented in terms of LGM

This allows us to take advantage of nice computational properties

— GMRFs
— Sparse precision matrices

This is at the heart of the INLA approach
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Introduction to INLA
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Integrated Nested Laplace Approximation (INLA) &

e The starting point to understand the INLA approach is the definition of
conditional probability, which holds for any pair of variables (z,z) — and,
technically, provided p(z) > 0

p(z,2)
plz | z) =:
@12) p(2)
which can be re-written as
T,z
p(z) = Pl 2)
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Integrated Nested Laplace Approximation (INLA) &

e The starting point to understand the INLA approach is the definition of
conditional probability, which holds for any pair of variables (z,z) — and,
technically, provided p(z) > 0

p(z, 2)
Tl z)=:
p(r]2) )
which can be re-written as
p(z, 2)
Z) =
P = T

e In particular, a conditional version can be obtained further considering a third

variable w as
p(x, 2 | w)

p(z | z,w)
which is particularly relevant to the Bayesian case

p(z | w) =
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Integrated Nested Laplace Approximation (INLA) &

e The second “ingredient” is Laplace approximation
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Integrated Nested Laplace Approximation (INLA) &

e The second “ingredient” is Laplace approximation

e Main idea: approximate log g(z) using a quadratic function by means of a
Taylor's series expansion around the mode &

R Odlog g(x R 10%logg(& R
logg(r) ~ logg(d) + 18I gy LOI0BIE) (50

= logg(2)+ =

1 0%log g(#) R . Blogg(é
5 a2 (x — 2)? (smce 725( ) = )

Gianluca Baio ( UCL) Introduction to INLA



Integrated Nested Laplace Approximation (INLA) &

e The second “ingredient” is Laplace approximation

e Main idea: approximate log g(z) using a quadratic function by means of a
Taylor's series expansion around the mode &

logg(z) =~ logg(z)+ al%j(@(x — )+ %%(w — )2
= logg(z)+ %%(m - #)? (since al%f(f) = 0)
e Setting 6% = —1 /% we can re-write
log g(x) ~ log g(%) — 2;2 (x — )

or equivalently

a2
/g(:z:)d:z: = /elogg(x)d:z: ~ const/exp [—%} dx
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Integrated Nested Laplace Approximation (INLA) &

e The second “ingredient” is Laplace approximation

e Main idea: approximate log g(z) using a quadratic function by means of a
Taylor's series expansion around the mode &

R Odlog g(x R 10%logg(& R
logg(r) ~ logg(d) + 18I gy LOI0BIE) (50

. 19%log g(2) . ) 9 R
= logg(2) + 3T o2 (x — 2)? (smce 71025(9”) = 0)
e Setting 62 = —1 /% we can re-write
1
log g(z) ~log 9(&) — 55 (v — 2)°

or equivalently

a2
/g(:z:)d:z: = /elogg(x)d:z: ~ const/exp [—%} dx

e Thus, under LA, g(z) ~ Normal(i,5?)
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Laplace approximation — example &

e Consider a x? distribution: p(z) = =
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Laplace approximation — example &

2 2
e Consider a x? distribution: p(z) = glz) _ w2 e
c c

© 1(a) =togg(e) = (§ ~1) oga
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Laplace approximation — example &

2 2
e Consider a x? distribution: p(z) = glz) _ w2 e
c c

© 1(a) =togg(e) = (§ ~1) oga

© 1r)= TN~ (T-1)0

N =
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Laplace approximation — example &

e Consider a x? distribution: p(z) = glz) _wr e
c

© 1(a) =togg(e) = (§ ~1) oga

@l’(w)z%ﬁ:(%—l)afl—%

" o 82 logg(:c) o k 9
Gy (:c)_T__(g_l)x
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Laplace approximation — example &

e Consider a x? distribution: p(z) = glz) _wr e
c

© 1(a) =togg(e) = (§ ~1) oga
® I'(x) = Joes@) _ (g - 1) el

Ox
w, _ O%logg(z) k PN

e Then
- Solving I'(x) = 0 we find the mode: & =k — 2

— Evaluating — at the mode gives 6% = 2(k — 2)

1
o)
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Laplace approximation — example &

e Consider a x? distribution: p(z) = glz) _wr e
c

© U(x) = log g() = (g - 1) logz - &
® I'(x) = Joes@) _ (g - 1) el

Ox
w, _ O%logg(z) k PN

e Then
- Solving I'(x) = 0 we find the mode: & =k — 2

— Evaluating — at the mode gives 6% = 2(k — 2)

1
l//(x)
e Consequently, we can approximate p(x) as

p(z) =~ p(x) = Normal(k — 2,2(k — 2))
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Laplace approximation — example

s 9
8 9
3 S
P I —x2(3) o~ —x2(6)
\
s, - - - Normal(1, 2) - - - Normal(4, 8)
84 ER
S S
9
4
g g
o =l
g
5
gl el TTT—= sJ/ -l TTT
° T T T T T T ° T T T T
0 2 4 6 8 10 0 5 10 15
N = — x2(10) — x2(20)
S
- - - Normal(8, 16) | c - - Normal(18, 36
s 2
3
g 34
3 3
g
K
8
3
8
S
84 84
° T T T T T ° T T T T T
] 5 10 15 20 ] 10 20 30 40
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Integrated Nested Laplace Approximation (INLA) &

e The general idea is that using the fundamental probability equations, we can
approximate a generic conditional (posterior) distribution as

plz,z | w)

iz |w) = ERES,

where p(z | z,w) is the Laplace approximation to the conditional distribution
of = given z, w
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Integrated Nested Laplace Approximation (INLA) &

e The general idea is that using the fundamental probability equations, we can
approximate a generic conditional (posterior) distribution as

plz,z | w)

iz |w) = ERES,

where p(z | z,w) is the Laplace approximation to the conditional distribution
of = given z, w

e This idea can be used to approximate any generic required posterior
distribution
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Integrated Nested Laplace Approximation (INLA) &

Objective of Bayesian estimation

e In a Bayesian LGM, the required distributions are
w0, 19) = [ o9 = [ o | wnlo; | b.)dw
ol = [ o] vivy
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Integrated Nested Laplace Approximation (INLA) &

Objective of Bayesian estimation

e In a Bayesian LGM, the required distributions are
w0, 19) = [ o9 = [ o | wnlo; | b.)dw
ol = [ o] vivy

e Thus we need to estimate:

(1.) p(¢ | y), from which also all the relevant marginals p(¢ | y) can be
obtained;
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Integrated Nested Laplace Approximation (INLA) &

Objective of Bayesian estimation

e In a Bayesian LGM, the required distributions are
w0, 19) = [ o9 = [ o | wnlo; | b.)dw
ol = [ o] vivy

e Thus we need to estimate:
(1.) p(¢ | y), from which also all the relevant marginals p(¢ | y) can be
obtained;

(2.) p(6; | ¢, y), which is needed to compute the marginal posterior for the
parameters
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Integrated Nested Laplace Approximation (INLA) &

(1.) can be easily estimated as

_ p0.¥]y)
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Integrated Nested Laplace Approximation (INLA) &

(1.) can be easily estimated as

p(¥ly) =
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Integrated Nested Laplace Approximation (INLA) &

(1.) can be easily estimated as

p(¥ly) =
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Integrated Nested Laplace Approximation (INLA) &

(1.) can be easily estimated as

p(¥ |y)

p(y) (0| v,y)
p(y | 0)p(0 | P)p(v) 1
p(y) p(0|,y)
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Integrated Nested Laplace Approximation (INLA) &

(1.) can be easily estimated as

p0,% | y)

p(’/’ | y) = p(0 | ,w’y)

_ py]0.9)p6,y) 1

p(y) JACAR'S)

~ ply|0)p@ | Y)p(¥) 1

B p(y) PO | ¥,y)

o P | $)p(y | 9)

(0| ,y)
. p(@)p(6 | ¥)p(y | 6) _. 5
~ JACAR'S) o—b(w) ety

where

- p(0 | 1, y) is the Laplace approximation of p(0 | ,y)
- 0 =60(¢) is its mode
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Integrated Nested Laplace Approximation (INLA) &

(2.) is slightly more complex, because in general there will be more elements in 8
than there are in 1@ and thus this computation is more expensive
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Integrated Nested Laplace Approximation (INLA) &

(2.) is slightly more complex, because in general there will be more elements in 8
than there are in 1@ and thus this computation is more expensive

e One easy possibility is to approximate p(6; | ¥, y) directly using a Normal
distribution, where the precision matrix is based on the Cholesky
decomposition of the precision matrix Q. While this is very fast, the
approximation is generally not very good
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Integrated Nested Laplace Approximation (INLA) &

(2.) is slightly more complex, because in general there will be more elements in 8
than there are in 1@ and thus this computation is more expensive
e One easy possibility is to approximate p(6; | ¥, y) directly using a Normal
distribution, where the precision matrix is based on the Cholesky
decomposition of the precision matrix Q. While this is very fast, the
approximation is generally not very good

o Alternatively, we can write @ = {6;,0_,}, use the definition of conditional
probability and again Laplace approximation to obtain

p({0;,60-,} [¥.y)
p(0—;10;.9,y)

p(0; | ¥, y) =
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Integrated Nested Laplace Approximation (INLA) &

(2.) is slightly more complex, because in general there will be more elements in 8
than there are in 1@ and thus this computation is more expensive
e One easy possibility is to approximate p(6; | ¥, y) directly using a Normal
distribution, where the precision matrix is based on the Cholesky
decomposition of the precision matrix Q. While this is very fast, the
approximation is generally not very good

o Alternatively, we can write @ = {6;,0_,}, use the definition of conditional
probability and again Laplace approximation to obtain

) o p({aj’e—j}|¢7y)_p<{6j’0—j}’¢|y) 1
PO Y = e Ty @y PO 105 %y)
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Integrated Nested Laplace Approximation (INLA) &

(2.) is slightly more complex, because in general there will be more elements in 8
than there are in 1@ and thus this computation is more expensive
e One easy possibility is to approximate p(6; | ¥, y) directly using a Normal
distribution, where the precision matrix is based on the Cholesky
decomposition of the precision matrix Q. While this is very fast, the
approximation is generally not very good

o Alternatively, we can write @ = {6;,0_,}, use the definition of conditional
probability and again Laplace approximation to obtain

‘ _ p({8,60-5} 1¥y) _p{6;,6-;}, % |y) 1
PO 1Y) = e Te, ) 2@y P06 16.9.7)
p(0.9 | y)
(6= 16;.%.9)
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Integrated Nested Laplace Approximation (INLA) &

(2.) is slightly more complex, because in general there will be more elements in 8
than there are in 1@ and thus this computation is more expensive

e One easy possibility is to approximate p(6; | ¥, y) directly using a Normal
distribution, where the precision matrix is based on the Cholesky
decomposition of the precision matrix Q. While this is very fast, the
approximation is generally not very good

o Alternatively, we can write @ = {6;,0_,}, use the definition of conditional
probability and again Laplace approximation to obtain

‘ _ p({0;,0-5} | y) _ p({0,,0-;}.9 |y) 1
POy = Te o by sy pO10,9.8)
p(0,% | y) o p(¥)p(0 | Y)p(y | 9)
p(0—; | 05,%,y) p(0—; | 05,%,y)
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Integrated Nested Laplace Approximation (INLA) &

(2.) is slightly more complex, because in general there will be more elements in 8
than there are in 1@ and thus this computation is more expensive

e One easy possibility is to approximate p(6; | ¥, y) directly using a Normal
distribution, where the precision matrix is based on the Cholesky
decomposition of the precision matrix Q. While this is very fast, the
approximation is generally not very good

o Alternatively, we can write @ = {6;,0_,}, use the definition of conditional
probability and again Laplace approximation to obtain

) o p({6j70—j}|¢7y) _p({aj’e—j}’¢|y) 1
POy = Te o by sy pO10,9.8)
p(0,% |y) o P)p(6 | d)p(y | 6)
p(0—; | 05,%,y) p(0—; | 05,%,y)
p(¥)p(0 | Y)p(y | 0) . A
PO 105,%.9) o —6 0, 2o 1.9)
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Integrated Nested Laplace Approximation (INLA) &

o Because (0_; | 6;,1,y) are reasonably Normal, the approximation works
generally well

e However, this strategy can be computationally expensive
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Integrated Nested Laplace Approximation (INLA) &

o Because (0_; | 6;,1,y) are reasonably Normal, the approximation works
generally well

e However, this strategy can be computationally expensive

e The most efficient algorithm is the “Simplified Laplace Approximation”
— Based on a Taylor's series expansion up to the third order of both numerator

and denominator for p(0; | ¥, y)
— This effectively “corrects” the Gaussian approximation for location and
skewness to increase the fit to the required distribution
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Integrated Nested Laplace Approximation (INLA) &

Because (0_, | 0;,1,y) are reasonably Normal, the approximation works
generally well

However, this strategy can be computationally expensive

The most efficient algorithm is the “Simplified Laplace Approximation”
— Based on a Taylor's series expansion up to the third order of both numerator
and denominator for p(0; | ¥, y)
— This effectively “corrects” the Gaussian approximation for location and
skewness to increase the fit to the required distribution

This is the algorithm implemented by default by R—INLA, but this choice can
be modified
— If extra precision is required, it is possible to run the full Laplace
approximation — of course at the expense of running time!
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Integrated Nested Laplace Approximation (INLA) &

Operationally, the INLA algorithm proceeds with the following steps:
i. Explore the marginal joint posterior for the hyper-parameters p(v) | y)
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Integrated Nested Laplace Approximation (INLA) &

Operationally, the INLA algorithm proceeds with the following steps:
i. Explore the marginal joint posterior for the hyper-parameters p(v) | y)
— Locate the mode by optimising log p(?) | y), eg using Newton-like
algorithms

P2
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Integrated Nested Laplace Approximation (INLA) &

Operationally, the INLA algorithm proceeds with the following steps:
i. Explore the marginal joint posterior for the hyper-parameters p(v) | y)
— Locate the mode %) by optimising log p(v | y), eg using Newton-like
algorithms
— Compute the Hessian at 1/; and change co-ordinates to standardise the
variables; this corrects for scale and rotation and simplifies integration

P2
E[z] =0

{‘!)
4 V[z] = 021

yp\
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Integrated Nested Laplace Approximation (INLA) &

Operationally, the INLA algorithm proceeds with the following steps:
i. Explore the marginal joint posterior for the hyper-parameters p(v) | y)

— Locate the mode %) by optimising log p(v | y), eg using Newton-like
algorithms

— Compute the Hessian at 1/; and change co-ordinates to standardise the
variables; this corrects for scale and rotation and simplifies integration

— Explore logp(% | y) and produce a grid of H points {1}, } associated with the
bulk of the mass, together with a corresponding set of area weights {Aj, }

P2

4y
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Integrated Nested Laplace Approximation (INLA) &

ii. For each element v} in the grid,
— Obtain the marginal posterior (1)}, | y), using interpolation and possibly
correcting for (probable) skewness by using log-splines;
— Evaluate the conditional posteriors p(0; | 7, y) on a grid of selected values
for 0;;
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Integrated Nested Laplace Approximation (INLA) &

ii. For each element v} in the grid,
— Obtain the marginal posterior (1)}, | y), using interpolation and possibly
correcting for (probable) skewness by using log-splines;
— Evaluate the conditional posteriors p(6; | 1}, y) on a grid of selected values

for 0;;

iii. Marginalise ¢} to obtain the marginal posteriors p(6; | y) using numerical
integration

H
B0 |y) =Y 505 | ¥i By | y)An
h=1
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Integrated Nested Laplace Approximation (INLA) &

So, it's all in the name...

Integrated Nested Laplace Approximation
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Integrated Nested Laplace Approximation (INLA) &

So, it's all in the name...

Integrated Nested Laplace Approximation

e Because Laplace approximation is the basis to estimate the unknown
distributions
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Integrated Nested Laplace Approximation (INLA) &

So, it's all in the name...

Integrated Nested Laplace Approximation
e Because Laplace approximation is the basis to estimate the unknown
distributions
e Because the Laplace approximations are nested within one another

— Since (2.) is needed to estimate (1.)
— NB: Consequently the estimation of (1.) might not be good enough, but it
can be refined
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Integrated Nested Laplace Approximation (INLA) &

So, it's all in the name...

Integrated Nested Laplace Approximation
e Because Laplace approximation is the basis to estimate the unknown
distributions
e Because the Laplace approximations are nested within one another

— Since (2.) is needed to estimate (1.)
— NB: Consequently the estimation of (1.) might not be good enough, but it
can be refined

e Because the required marginal posterior distributions are obtained by
(numerical) integration
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INLA — example &

e Suppose we want to make inference on a very simple model

Yyij | 05,10 ~ Normal(;,03) (0% assumed known)
0j [+ ~ Normal(0,7) () = 77! is the precision)
¥~ Gamma(a,b)
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INLA — example &

e Suppose we want to make inference on a very simple model

Yyij | 05,10 ~ Normal(;,03) (0% assumed known)
0j [+ ~ Normal(0,7) () = 77! is the precision)
¥~ Gamma(a,b)

e So, the model is made by a three-level hierarchy:
@® Datay = (yi;)fori=1,...,njand j=1,...,J
@® Parameters 0 = (61,...,0)
© Hyper-parameter ¢
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INLA — example &

e Suppose we want to make inference on a very simple model

Yyij | 05,10 ~ Normal(;,03) (0% assumed known)
0j [+ ~ Normal(0,7) () = 77! is the precision)
¥~ Gamma(a,b)

e So, the model is made by a three-level hierarchy:
@® Datay = (yi;)fori=1,...,njand j=1,...,J
@® Parameters 0 = (61,...,0)
© Hyper-parameter ¢

e NB: This model is in fact semi-conjugated, so inference is possible
numerically or using simple MCMC algorithms
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INLA — example &

e Because of semi-conjugacy, we know that
6,y | & ~ Normal(-, )

and thus we can compute (numerically) all the marginals
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INLA — example &

e Because of semi-conjugacy, we know that
6,y | & ~ Normal(-, )

and thus we can compute (numerically) all the marginals
e In particular

p(¥ly) o ply|¥)p(¥)
Gaussian
p(0,y | ¥)p(¥)
p(0 ]y, )
————

Gaussian
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INLA — example &

e Because of semi-conjugacy, we know that
8,y | v ~ Normal(-, )

and thus we can compute (numerically) all the marginals
e In particular

p(¥|y) o ply|¥)p¥)

Gaussian

——
PO,y | ¥)p¥)
p(0 |y, )
————

Gaussian

e Moreover, because p(6 | y) ~ Normal(-,-) and so are all the resulting
marginals (ie for every element j), it is easy to compute

p(6; | y) = / p(6; | y.0) pw | y) dv

Gaussian  Approximated
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INLA — example

1. Select a grid of H points for ¢ ({1} }) and the associated area weights ({A})

Posterior marginal for ¢ : p(1) | y) o 2(0.ylv)p(¥)

p(@ly,v)
o
< ] P
« |
o ° °
2 °
g o
U(D__ .
g o
=
o
s
s < o
g o
(=]
o
x
w
N
o
°
o 4
S| ee @ o .
T T T T T T
1 2 3 4 5 6

Log precision
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INLA — example

2. Interpolate the posterior density to compute the approximation to the posterior

Posterior marginal for v (interpolated)

o |
-
«© |
IS]

2

@

c

5]

T 9o |

=

g8 ©

=

5]

8

< |

@

2 o

S

S

X

w
N
o
o |
<]

Log precision
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INLA — example &

3. Compute the posterior marginal for each 6; given each 1) on the H—dimensional grid

Posterior marginal for 61, conditional on each {1, } value (unweighted)

<
—

0.8
1

0.6
1

Density

0.4

0.2
1

0.0
L

-14 -12 -10 -8
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h

4. Weight the resulting (conditional) marginal posteriors by the density associated with each
1 on the grid

Posterior marginal for 61, conditional on each {¢}; } value (weighted)

@
S 4
o

Density
0.04 0.06
1 1

0.02
1

0.00
L
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INLA — example

5. (Numerically) sum over all the conditional densities to obtain the marginal posterior for
each of the elements 6;

Posterior marginal for 61 : p(61 | y)

0.5

0.4

Density
0.3

0.1
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INLA — Summary

e The basic idea behind the INLA procedure is simple
— Repeatedly use Laplace approximation and take advantage of computational
simplifications due to the structure of the model
— Use numerical integration to compute the required posterior marginal

distributions
— (If necessary) refine the estimation (eg using a finer grid)
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INLA — Summary

e The basic idea behind the INLA procedure is simple
— Repeatedly use Laplace approximation and take advantage of computational
simplifications due to the structure of the model
— Use numerical integration to compute the required posterior marginal

distributions
— (If necessary) refine the estimation (eg using a finer grid)

e Complications are mostly computational and occur when

— Extending to more than one hyper-parameter
— Markedly non-Gaussian observations
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Using the package R-INLA
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The INLA package for R &

Good news is that all the procedures needed to perform INLA are implemented in
a R package. This is effectively made by two components
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The INLA package for R

Good news is that all the procedures needed to perform INLA are implemented in
a R package. This is effectively made by two components

@ The GMRFLiD library
— This is a C library for fast and exact simulation of GMRFs, used to perform

e Unconditional simulation of a GMRF;

e Various types of conditional simulation from a GMRF;

e Evaluation of the corresponding log-density;

e Generation of blockupdates in MCMC-algorithms using GMRF-approximations
or auxilliary variables, construction of non-Gaussian approximations to hidden
GMREFs, approximate inference using INLA
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The INLA package for R

Good news is that all the procedures needed to perform INLA are implemented in
a R package. This is effectively made by two components

@® The GMRFLib library
— This is a C library for fast and exact simulation of GMRFs, used to perform

e Unconditional simulation of a GMRF;

e Various types of conditional simulation from a GMRF;

e Evaluation of the corresponding log-density;

e Generation of blockupdates in MCMC-algorithms using GMRF-approximations
or auxilliary variables, construction of non-Gaussian approximations to hidden
GMREFs, approximate inference using INLA

® The inla program
— A standalone C program that

® Interfaces with GMRFLib
e Performs the relevant computation and returns the results in a standardised way
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The INLA package for R

Good news is that all the procedures needed to perform INLA are implemented in
a R package. This is effectively made by two components

@ The GMRFLiD library
— This is a C library for fast and exact simulation of GMRFs, used to perform

o Unconditional simulation of a GMRF;

e Various types of conditional simulation from a GMRF;

e Evaluation of the corresponding log-density;

e Generation of blockupdates in MCMC-algorithms using GMRF-approximations
or auxilliary variables, construction of non-Gaussian approximations to hidden
GMREFs, approximate inference using INLA

® The inla program
— A standalone C program that

® Interfaces with GMRFLib
e Performs the relevant computation and returns the results in a standardised way

NB: Because the package R-INLA relies on a standalone C program, it is not
available directly from CRAN
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The INLA package for R — Installation &

o Visit the website
www.r-inla.org

and follow the instructions

e The website contains source code, examples, papers and reports discussing
the theory and applications of INLA
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The INLA package for R — Installation &

e Visit the website
www.r-inla.org
and follow the instructions

e The website contains source code, examples, papers and reports discussing
the theory and applications of INLA

e From R, installation is performed typing
source("http://www.math.ntnu.no/inla/givemeINLA.R")

e Later, you can upgrade the package by typing
inla.upgrade()

e A test-version (which may contain unstable updates/new functions) can be
obtained by typing
inla.upgrade (testing=TRUE)
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The INLA package for R — Installation &

e Visit the website
www.r-inla.org
and follow the instructions

e The website contains source code, examples, papers and reports discussing
the theory and applications of INLA

e From R, installation is performed typing
source("http://www.math.ntnu.no/inla/givemeINLA.R")

e Later, you can upgrade the package by typing
inla.upgrade()

e A test-version (which may contain unstable updates/new functions) can be
obtained by typing
inla.upgrade (testing=TRUE)

e R-INLA runs natively under Linux, Windows and Mac and it is possible to do
multi-threading using OpenMP
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The INLA package for R — How does it work? &

Produces:

e Input files Output

Input

e .ini files

Runs the
inla
program

A R object
in the class

INLA
package

Data frame,

formula X
inla

Collect
results
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The INLA package for R — Documentation &

e There has been a great effort lately in producing quite a lot user-frienly(-ish)
documentation
e Tutorials are (or will shortly be) available on
— Basic INLA (probably later this year)
— SPDE (spatial models based on stochastic partial differential equations)
models
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The INLA package for R — Documentation

e There has been a great effort lately in producing quite a lot user-frienly(-ish)
documentation
e Tutorials are (or will shortly be) available on

— Basic INLA (probably later this year)
— SPDE (spatial models based on stochastic partial differential equations)
models

e Much of the recent development in R—-INLA is devoted to extending the
applications of INLA for spatial and spatio-temporal models as well as
producing detailed information

e The website also has a discussion forum and a FAQ page
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Step by step guide to using R—INLA &

1. The first thing to do is to specify the model

e For example, assume we have a generic model
iid
yi ~ pyil0)
ni = g(0:) = Bo+ Biwii + fawai + f(2i)

where

— @« = (x1,x2) are observed covariates for which we are assuming a linear effect
on some function g(-) of the parameter 6;

- B = (B0, B1,B2) ~ Normal(0, 7, ") are unstructured ( “fixed") effects

— zis an index. This can be used to include structured (“random”), spatial,
spatio-temporal effect, etc.

— f ~ Normal(0, Q;l(rz)) is a suitable function used to model the structured
effects
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Step by step guide to using R—INLA &

1. The first thing to do is to specify the model

e For example, assume we have a generic model
iid
yi ~ pyil0i)
ni = g(0:) = Bo+ Biwii + fawai + f(2i)

where

— @« = (x1,x2) are observed covariates for which we are assuming a linear effect
on some function g(-) of the parameter 6;

- B = (B0, B1,B2) ~ Normal(0, 7, ") are unstructured ( “fixed") effects

— zis an index. This can be used to include structured (“random”), spatial,
spatio-temporal effect, etc.

— f ~ Normal(0, Q;l(rz)) is a suitable function used to model the structured
effects

e As mentioned earlier, this formulation can actually be used to represent quite
a wide class of models!
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Step by step guide to using R—INLA &

e The model is translated in R code using a formula

e This is sort of standard in R (you would do pretty much the same for calls to
functions such as 1m, or glm, or lmer)

formula = y ~ x1 + x2 + £(z, model=...)
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Step by step guide to using R—INLA &

e The model is translated in R code using a formula

e This is sort of standard in R (you would do pretty much the same for calls to
functions such as 1m, or glm, or lmer)

formula = y ~ x1 + x2 + £(z, model=...)

e The £ () function can account for several structured effects
e This is done by specifying a different model
— iid, iidi1d, iid2d, 1id3d specify random effects
— rwl, rw2, arl are smooth effect of covariates or time effects
— seasonal specifies a seasonal effect
— besag models spatially structured effects (CAR)
— generic is a user-defined precision matrix

Gianluca Baio ( UCL) Introduction to INLA



Step by step guide to using R—INLA &

2. Call the function inla, specifying the data and options (more on this later),

eg
m = inla(formula, data=data.frame(y,x1,x2,z))
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Step by step guide to using R—INLA &

2. Call the function inla, specifying the data and options (more on this later),

eg
m = inla(formula, data=data.frame(y,x1,x2,z))

e The data need to be included in a suitable data.frame
e R returns an object m in the class inla, which has some methods available

— summary ()
- plot()

e The options let you specify the priors and hyperpriors, together with
additional output
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Step by step guide to using R—INLA

names (m)
[1] "names.fixed"
[3] "marginals.fixed"
[6] "marginals.lincomb"
[7] "summary.lincomb.derived"
[9] "size.lincomb.derived"
[1 1] "CPO"
[13] "summary.random"
[156] "size.random"
[17] "marginals.linear.predictor"
[19] "marginals.fitted.values"
[21] "summary.hyperpar"
[23] "internal.summary.hyperpar"
[25] ngin
[27] "model.spde2.blc"
[29] "marginals.spde2.blc"
[31] "logfile"
[33] "dic"
[35] "neffp"
[37] "nhyper"
[39] n Q n
[41] "cpu.used"
[43] "call"

Gianluca Baio ( UCL)

"summary.fixed"
"summary.lincomb"
"size.lincomb"
"marginals.lincomb.derived"
llmlikll

"model.random"
"marginals.random"
"summary.linear.predictor"
"summary.fitted.values"
"size.linear.predictor"
"marginals.hyperpar"
"internal.marginals.hyperpar"
"offset.linear.predictor"
"summary.spde2.blc"
"size.spde2.blc"

llmisc n

llmode n

"joint.hyper"

"version"

n . args n
"model.matrix"

Introduction to INLA



Example — Binary data with individual random effect

First, generate some data from an assumed model

y; ~ Binomial(m;, N;), fori=1,...,n=12

library (INLA)

# Data generation

n=12

Ntrials = sample(c(80:100), size=n, replace=TRUE)
eta = rnorm(n,0,0.5)

prob = exp(eta)/(1 + exp(eta))

y = rbinom(n, size=Ntrials, prob = prob)
data=data.frame(y=y,z=1:n,Ntrials)
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Example — Binary data with individual random effect

data

y z Ntrials
1 50 1 95
2 37 2 97
3 36 3 93
4 47 4 96
5 39 5 80
6 67 6 97
7 60 7 89
8 57 8 84
9 34 9 89
10 57 10 96
11 46 11 87

12 48 12 98
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Example — Binary data with individual random effect &

We want to fit the following model

yi ~ Binomial(m;, N;), fori=1,...,n=12

data logit(mi) = o+ f(z)

y z Ntrials a ~ Normal(0,1000) (“fixed” effect)
150 1 95 f(z) ~ Normal(0,0?) (“random” effect)
2 37 2 97 ’

3 36 3 93 p(02) x o =1 (“non-informative” prior)
4 47 4 96 ~ log o ~ Uniform(0, c0)

5 39 5 80

6 67 6 97

7 60 7 89

8 57 8 84

9 34 9 89

10 57 10 96

11 46 11 87

12 48 12 98
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Example — Binary data with individual random effect &

We want to fit the following model

yi ~ Binomial(m;, N;), fori=1,...,n=12

data

logit(m) = a4+ f(z)
y z Ntrials a ~ Normal(0,1000) (“fixed” effect)

1 50 1 95 2 “ "

5 37 o 97 f(z:) ~ Normal(0,07) (“random” effect)

3 36 3 93 p(02) x o t=r1 (“non-informative” prior)

4 47 4 96 ~ log o ~ Uniform(0, o)

5 39 b5 80

6 67 6 97 _ o

7 60 7 89 This can be done by typing in R

8 57 8 84 formula = y ~ f(z,model="iid",

9 34 9 89 1098 : e

10 57 10 % hyper=list(list(prior="flat")))
m=inla(formula, data=data,

1146 11 87 family="binomial"

12 48 12 98 4 ’

Ntrials=Ntrials,
control.predictor = list(compute = TRUE))
summary (m)
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Example — Binary data with individual random effect &

We want to fit the following model

yi ~ Binomial(m;, N;), fori=1,...,n=12

data

logit(m) = a4+ f(z)
y z Ntrials a ~ Normal(0,1000) (“fixed” effect)

1 50 1 95 2 “ "

5 37 o 97 f(z:) ~ Normal(0,07) (“random” effect)

3 36 3 93 p(02) x o t=r1 (“non-informative” prior)

4 47 4 96 ~ log o ~ Uniform(0, o)

5 39 b5 80

6 67 6 97 _ o

7 60 7 89 This can be done by typing in R

8 57 8 84 formula = y ~ f(z,model="iid",

9 34 9 89 109 : e

10 57 10 % hyper=list(list(prior="flat")))
m=inla(formula, data=data,

1146 11 87 family="binomial"

12 48 12 98 4 ’

Ntrials=Ntrials,
control.predictor = list(compute = TRUE))
summary (m)
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Example — Binary data with individual random effect

Call:
c("inla(formula = formula, family = \"binomial\", data = data, Ntrials = Ntrials,
"control.predictor = list(compute = TRUE))")

Time used:
Pre-processing Running inla Post-processing Total
0.2258 0.0263 0.0744 0.3264

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant kld
(Intercept) -0.0021 0.136 -0.272 -0.0021 0.268 0

Random effects:
Name Model
z IID model

Model hyperparameters:
mean  sd 0.025quant 0.5quant 0.975quant
Precision for z 7.130 4.087 2.168 6.186  17.599

Expected number of effective parameters(std dev): 9.494(0.7925)
Number of equivalent replicates : 1.264

Marginal Likelihood: -54.28
CPO and PIT are computed

Posterior marginals for linear predictor and fitted values computed
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Exploring the R—-INLA output

Fixed effects:
mean sd 0.025quant O.5quant 0.975quant kld
(Intercept) -0.0021 0.136 -0.272 -0.0021 0.268 0
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Exploring the R—-INLA output

Fixed effects:
mean sd 0.025quant O.5quant 0.975quant kld
(Intercept) -0.0021 0.136 -0.272 -0.0021 0.268 0

e For each unstructured ( “fixed”) effect, R-INLA reports a set of summary
statistics from the posterior distribution
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Exploring the R—-INLA output &

Fixed effects:

mean sd 0.025quant O.5quant 0.975quant kld
(Intercept) -0.0021 0.136 -0.272 -0.0021 0.268 0

e For each unstructured (“fixed") effect, R-INLA reports a set of summary
statistics from the posterior distribution

e The value of the Kullback-Leibler divergence (KLD) describes the difference
between the standard Gaussian and the Simplified Laplace Approximation to
the marginal posterior densities

— Small values indicate that the posterior distribution is well approximated by a
Normal distribution

— If so, the more sophisticated SLA gives a “good” error rate and therefore there
is no need to use the more computationally intensive “full” Laplace
approximation
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Exploring the R—-INLA output

Random effects:
Name Model
z IID model

Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant
Precision for z 7.130 4.087 2.168 6.186  17.599

e Also for each hyper-parameter, the summary statistics are reported to
describe the posterior distribution

e NB: INLA reports results on the precision scale (more on this later)

Gianluca Baio ( UCL) Introduction to INLA



Exploring the R—-INLA output

Expected number of effective parameters(std dev): 9.494(0.7925)
Number of equivalent replicates : 1.264
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Exploring the R—-INLA output

Expected number of effective parameters(std dev): 9.494(0.7925)
Number of equivalent replicates : 1.264

e The expected number of effective parameters is basically the number of
independent parameters included in the model
— In a hierarchical model, because of shrinkage, information is shared across
parameters
— Example: in this case there are 14 actual parameters (o, o2, f(1), ..., f(12)).
However, because the structured effects are exchangeable (ie correlated) the
“effective” number of parameters is (on average) just 9.5
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Exploring the R—-INLA output

Expected number of effective parameters(std dev): 9.494(0.7925)
Number of equivalent replicates : 1.264

e The expected number of effective parameters is basically the number of
independent parameters included in the model
— In a hierarchical model, because of shrinkage, information is shared across
parameters
— Example: in this case there are 14 actual parameters (o, o2, f(1), ..., f(12)).
However, because the structured effects are exchangeable (ie correlated) the
“effective” number of parameters is (on average) just 9.5

e The number of equivalent replicates indicates the available information (in
terms of sample size) per effective parameter
— Example: there are 12 data points and on average 9.5 parameters; so each is
estimated using on average 12/9.5 ~ 1.3 data points
— Low values (with respect to the overall sample size) are indicative of poor fit
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Exploring the R—-INLA output

Marginal Likelihood: -54.28
CPO and PIT are computed

e R-INLA can produce two types of “leave-one-out” measures of fit
@ Conditional Predictive Ordinate (CP0): p(v; | y—:)
e “Extreme” values for CPO indicate a surprising observation
@ Probability Integral Transforms (PIT): Pr(yi“" <y, | y—;)
e “Extreme” values for PIT indicate outliers
e A histogram of PIT that does not look Uniformly distributed indicate lack of fit
for the current model
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Exploring the R—-INLA output

Marginal Likelihood: -54.28
CPO and PIT are computed

e R-INLA can produce two types of “leave-one-out” measures of fit
@ Conditional Predictive Ordinate (CP0): p(v; | y—:)
e “Extreme” values for CPO indicate a surprising observation
@ Probability Integral Transforms (PIT): Pr(yi“" <y, | y—;)
e “Extreme” values for PIT indicate outliers
e A histogram of PIT that does not look Uniformly distributed indicate lack of fit

for the current model

e If the option
control.compute=1list (cpo=TRUE)
is added to the call to the function inla then the resulting object contains
values for CPO and PIT, which can then be post-processed
— NB: for the sake of model checking, it is useful to to increase the accuracy of
the estimation for the tails of the marginal distributions
— This can be done by adding the option
control.inla = list(strategy = "laplace", npoints = 21)
to add more evaluation points (npoints=21) instead of the default
npoints=9
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Example — Binary data with individual random effect

PostDens [(Intercept)]

plot(m) o |
el
plot(m, <
plot.fixed.effects = TRUE,
plot.lincomb = FALSE, N
plot.random.effects = FALSE,
plot.hyperparameters = FALSE, 3
plot.predictor = FALSE,
plot.q = FALSE, 3
plot.cpo = FALSE
w
) 3
o |
o

plot(m,single = TRUE) 05 00 05

Mean = -0.002 SD = 0.136
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Example — Binary data with individual random effect

plot(m) o
g m
plot(m,
plot.fixed.effects = FALSE,
plot.lincomb = FALSE, 3
plot.random.effects = TRUE,
plot.hyperparameters = FALSE,
plot.predictor = FALSE, ? 7
plot.q = FALSE,
plot.cpo = FALSE °
) ™

PostMean 0.025% 0.5% 0.975%
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Manipulating the results from R-INLA

e The elements of the object m can be used for post-processing

m$summary . fixed

mean sd 0.025quant 0.5quant 0.975quant kld
(Intercept) -0.002092578 0.1360447 -0.2720331 -0.002101465 0.2680023 1.866805e-08

m$summary . random

$z

ID mean sd 0.025quant 0.5quant 0.975quant kld
1 1 0.117716597 0.2130482 -0.29854459 0.116540837 0.54071007 1.561929e-06
2 2 -0.582142549 0.2328381 -1.05855344 -0.575397613 -0.14298960 3.040586e-05
3 3 -0.390419424 0.2159667 -0.82665552 -0.386498698 0.02359256 1.517773e-05
4 4 -0.087199172 0.2174477 -0.51798771 -0.086259111 0.33838724 7.076793e-07
5 5 0.392724605 0.2220260 -0.03217954 0.388462164 0.84160800 1.604348e-05
6 6 -0.353323459 0.2210244 -0.79933142 -0.349483252 0.07088015 1.242953e-05
7 7 -0.145238917 0.2122322 -0.56726042 -0.143798605 0.26859415 2.047815e-06
8 8 0.679294456 0.2279863 0.25076022 0.672226639 1.14699903 4.145645e-05
9 9 -0.214441626 0.2141299 -0.64230245 -0.212274011 0.20094086 4.577080e-06
10 10 0.001634115 0.2131451 -0.41797579 0.001622300 0.42152562 4.356243e-09
11 11 0.001593724 0.2190372 -0.42961274 0.001581019 0.43309253 3.843622e-09
12 12 0.580008923 0.2267330 0.15173745 0.573769187 1.04330359 3.191737e-05
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Manipulating the results from R-INLA &

alpha <- m$marginals.fixed[[1]] Marginal posterior: p(a | y)
plot(inla.smarginal(alpha),t="1")

15 2.0 25
I

1.0

05

0.0

-05 0.0 0.5
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Manipulating the results from R-INLA

alpha <- m$marginals.fixed[[1]] Marginal posterior: p(a | y)
plot(inla.smarginal(alpha),t="1")
o
o
inla.gmarginal(0.05,alpha) &
[1] -0.2257259
o
o
o
L
o
2
o

-05 0.0 0.5
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Manipulating the results from R-INLA

alpha <- m$marginals.fixed[[1]] Marginal posterior: p(c | y)
plot(inla.smarginal(alpha),t="1")

inla.gmarginal(0.05,alpha) &

[1] -0.2257259

inla.pmarginal (-.2257259,alpha)

[1] 0.04999996 2

-05 0.0 0.5
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Manipulating the results from R-INLA

alpha <- m$marginals.fixed[[1]]

Marginal posterior: p(a | y)
plot(inla.smarginal(alpha),t="1")

inla.gmarginal(0.05,alpha)
[1] -0.2257259

inla.pmarginal (-.2257259,alpha)
[1] 0.04999996

inla.dmarginal(0,alpha)
[1] 3.055793

-05 0.0 0.5
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Manipulating the results from R-INLA

alpha <- m$marginals.fixed[[1]]
plot(inla.smarginal(alpha),t="1")

inla.gmarginal(0.05,alpha)
[1] -0.2257259

inla.pmarginal (-.2257259,alpha)
[1] 0.04999996

inla.dmarginal(0,alpha)
[1] 3.055793

inla.rmarginal(4,alpha)
[1] 0.05307452 0.07866796 =-0.09931744 -0.02027463
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Example — Binary data with individual random effect

NB: INLA works by default with precisions

PostDens [Precision for z]

plot(m,
plot.fixed.effects = FALSE,
plot.lincomb = FALSE,
plot.random.effects = FALSE,
plot.hyperparameters = TRUE,
plot.predictor = FALSE,
plot.q = FALSE,
plot.cpo = FALSE

0.04 0.06 008 0.10 012 0.14

0.00 0.02
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Example — Binary data with individual random effect

NB: INLA works by default with precisions

PostDens [Precision for z]

plot(m,
plot.fixed.effects = FALSE,
plot.lincomb = FALSE,
plot.random.effects = FALSE,
plot.hyperparameters = TRUE,
plot.predictor = FALSE,
plot.q = FALSE,
plot.cpo = FALSE

0.04 0.06 008 0.10 012 0.14

0.00 0.02

Problem: usually, we want to make inference on more interpretable parameters,
eg standard deviations
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Example — Binary data with individual random effect

e Using some built-in INLA functions
— model$marginals.hyperpar
— inla.expectation
— inla.rmarginal
it is possible to compute the structured variability, for example on the
standard deviation scale, based on nsamples (default=1000) MC simulations
from the estimated precision

s <- inla.contrib.sd(m,nsamples=1000)
s$hyper

mean sd 2.5% 97.5%
sd for z 0.416862 0.1098968 0.2332496 0.6478648
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Example — Binary data with individual random effect &

e Using some built-in INLA functions
— model$marginals.hyperpar
— inla.expectation
— inla.rmarginal
it is possible to compute the structured variability, for example on the
standard deviation scale, based on nsamples (default=1000) MC simulations
from the estimated precision

s <- inla.contrib.sd(m,nsamples=1000)
s$hyper

mean sd 2.5% 97.5%
sd for z 0.416862 0.1098968 0.2332496 0.6478648

e The object s contains a vector of simulations from the induced posterior
distribution for the standard deviation scale, than can then be used for plots

hist(s$samples)
plot(density(s$samples,bw=.1) ,xlab="sigma",main="")
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Example — Binary data with individual random effect

_1
Posterior distribution for o = 77 2

25

Density
15

1.0

0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Standard deviation for the structured effect, o
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Example — Binary data with individual random effect

If we wanted to perform MCMC on this model, we could
@ Program it in JAGS/BUGS and save it as model.txt

model {

for (i in 1:n) {
y[i] ~ dbinom(pil[i],Ntrials[il])
logit(pil[i]) <- alpha+f[i]
f[i] ~ dnorm(0,tau)

}

alpha ~ dnorm(0,.001)

log.sigma ~ dunif(0,10000)

sigma <- exp(log.sigma)

tau <- pow(sigma,-2)
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Example — Binary data with individual random effect

If we wanted to perform MCMC on this model, we could
@ Program it in JAGS/BUGS and save it as model.txt

model {

for (i in 1:n) {
y[i] ~ dbinom(pil[i],Ntrials[il])
logit(pil[i]) <- alpha+f[i]
f[i] ~ dnorm(0,tau)

}

alpha ~ dnorm(0,.001)

log.sigma ~ dunif(0,10000)

sigma <- exp(log.sigma)

tau <- pow(sigma,-2)

@ In R, use the library R2jags (or R2WinBUGS) to interface with the MCMC software

library(R2jags)

filein <- "model.txt"

dataJags <- list(y=y,n=n,Ntrials=Ntrials,prec=prec)

params <- c("sigma","tau","f","pi","alpha")

inits <- function(){ list(log.sigma=runif(1),alpha=rnorm(1),f=rnorm(n,0,1)) }

n.iter <- 100000

n.burnin <- 9500

n.thin <- floor((n.iter-n.burnin)/500)

mj <- jags(dataJags, inits, params, model.file=filein,n.chains=2, n.iter, n.burnin,
n.thin, DIC=TRUE, working.directory=working.dir, progress.bar="text")

print (mj,digits=3,intervals=c(0.025, 0.975))

Gianluca Baio ( UCL) Introduction to INLA



Example — Binary data with individual random effect

Inference for Bugs model at "model.txt", fit using jags,
2 chains, each with 1e+05 iterations (first 9500 discarded), n.thin = 181
n.sims = 1000 iterations saved (Time to run: 4.918 sec)

mu.vect sd.vect 2.5% 97.5% Rhat n.eff

alpha -0.005 0.146 -0.270 0.292 1.001 1000
£[1] 0.122  0.220 -0.347 0.582 1.001 1000
f[2] -0.564 0.238 -1.051 -0.115 1.008 190
£[3] -0.386 0.229 -0.880 0.050 1.000 1000
£[4] -0.086 0.225 -0.549 0.367 1.002 780
£[5] 0.392 0.227 -0.047 0.828 1.002 870
f[6] -0.351 0.229 -0.805 0.081 1.000 1000
£[7] -0.141  0.221 -0.578 0.286 1.001 1000
f[8] 0.672 0.236 0.246 1.200 1.002 860
£[9] -0.224 0.210 -0.643 0.178 1.000 1000
£[10] 0.016 0.219 -0.396 0.463 1.006 1000
f£[11] -0.001 0.221 -0.441 0.416 1.002 780
f£[12] 0.585 0.245 0.153 1.093 1.001 1000
sigma 0.414 0.120 0.230 0.693 1.000 1000
tau 7.415 4.546 2.080 18.951 1.000 1000
deviance 72.378 5.497 64.016 84.715 1.000 1000

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 156.1 and DIC = 87.5
DIC is an estimate of expected predictive error (lower deviance is better).
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Example — Binary data with individual random effect

Structured effects
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Example — Binary data with individual random effect

_1
Posterior distribution for o = 77 2

— — JAGS
—— INLA

35
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Standard deviation for the structured effect, o

Introduction to INLA



Example — Binary data with individual random effect &

e R-INLA allows to make predictive inference based on the observed model
e Suppose for example that the (n + 1)—th value is not (yet) observed for the
response variable y

— NB: for R-INLA, a missing value in the response means no likelihood
contribution
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Example — Binary data with individual random effect

e R-INLA allows to make predictive inference based on the observed model

e Suppose for example that the (n + 1)—th value is not (yet) observed for the
response variable y

— NB: for R-INLA, a missing value in the response means no likelihood
contribution

e We can code this in R, by augmenting the original dataset
y[n+1] <- NA
Ntrials[n+1] <- sample(c(80:100),size=1,replace=TRUE)
data2 <- data.frame(y=y,z=1:(n+1),Ntrials=Ntrials)

formula2 = y ~ f(z,model="iid",hyper=list(list(prior="flat")))
m2=inla(formula2,data=data2,

family="binomial",

Ntrials=Ntrials,

control.predictor = list(compute = TRUE))

summary (m2)
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Example — Binary data with individual random effect

Time used:
Pre-processing Running inla Post-processing Total
0.0883 0.0285 0.0236 0.1404
(0.2258) (0.0263) (0.0744) (0.3264)
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant kld
(Intercept) -0.0021 0.136 -0.272  -0.0021 0.268 0
(-0.0021) (0.136) (-0.272) (-0.0021) (0.268) (0)

Random effects:
Name Model
z IID model

Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant
Precision for z 7.130 4.087 2.168 6.186  17.599
(7.130) (4.087) (2.168) (6.168) (17.599)

Expected number of effective parameters(std dev): 9.494(0.7925)
Number of equivalent replicates : 1.264

Marginal Likelihood: -54.28
CPO and PIT are computed

Posterior marginals for linear predictor and fitted values computed
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Example — Binary data with individual random effect

e The estimated value for the predictive distribution can be retrieved using the
following code
pred <- m2$marginals.linear.predictor[[n+1]]
plot(pred,xlab="",ylab="Density")
lines(inla.smarginal (pred))

which can be used to generate, eg a graph of the predictive density

0.8
1

Density
0.6

04

0.2

0.0
L
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Specifying the model — options &

e It is possible to specify link functions that are different from the default used
by R-INLA

e This is done by specifying suitable values for the option control.family to
the call to inla, eg

m = inla(formula, data=data, family="binomial", Ntrials=Ntrials,
control.predictor=1list (compute=TRUE),
control.family = list(link = "probit"))
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Specifying model — options

e It is possible to specify link functions that are different from the default used
by R-INLA

e This is done by specifying suitable values for the option control.family to
the call to inla, eg

m = inla(formula, data=data, family="binomial", Ntrials=Ntrials,

control.predictor=1list (compute=TRUE),
control.family = list(link = "probit"))

o More details are available on the R-INLA website:
— http://www.r-inla.org/models/likelihoods
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Specifying the model — options &

e R-INLA has a set of default priors for the different components of the
LGM/GMRF
e For example, in a standard hierarchical formulation, R-INLA assumes

— Unstructured (“fixed") effects: 8 ~ Normal(0,0.001)
— Structured (“random”) effects: f(z;) ~ Normal(0, 7)

log T ~ logGamma(1, 0.00005)
e NB: It is possible to see the default settings using the function

inla.model.properties(<name>, <section>)

Gianluca Baio ( UCL)
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Specifying the model — options

e R-INLA has a set of default priors for the different components of the
LGM/GMRF
For example, in a standard hierarchical formulation, R-INLA assumes

— Unstructured (“fixed") effects: 8 ~ Normal(0,0.001)
— Structured (“random”) effects: f(z;) ~ Normal(0, 7)
log T ~ logGamma(1, 0.00005)

e NB: It is possible to see the default settings using the function

inla.model.properties(<name>, <section>)

However, there is a wealth of possible formulations that the user can specify,
especially for the hyperpriors
More details are available on the R-INLA website:

— http://www.r-inla.org/models/likelihoods

— http://www.r-inla.org/models/latent-models
— http://www.r-inla.org/models/priors
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Specifying the model — options

Models for the observed data

Model Name

Negative Binomial nbinomial

Poisson poisson

Binomial binomial

Clustered Binomial cbinomial

Gaussian gaussian

Skew Normal sn

Laplace laplace

Student-t T

Gaussian model for stochastic volatility stochvol

Student-t model for stochastic volatility stochvol.t

NIG model for stochastic volatility stochvol.nig

Zero inflated Poisson zeroinflated.poisson.x (x=0,1,2)
Zero inflated Binomial zeroinflated.binomial.x (x=0,1)
Zero inflated negative Binomial zeroinflated.nbinomial.x (x=0,1,2)
Zero inflated beta binomial (type 2) zeroinflated.betabinomial.2
Generalised extreme value distribution (GEV) gev

Beta beta

Gamma gamma

Beta-Binomial betabinomial

Logistic distribution logistic

Exponential (Survival models) exponential

Weibull (Survival model) weibull

LogLogistic (Survival model) loglogistic

LogNormal (Survival model) lognormal

Cox model (Survival model) coxph
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Specifying the model — options
Models for the GMRF

Model Name
Independent random variables iid
Linear linear
Random walk of order 1 rwl
Random walk of order 2 rw2
Continuous random walk of order 2 crw2
Model for seasonal variation seasonal
Model for spatial effect besag
Model for spatial effect besagproper
Model for weighted spatial effects besag2
Model for spatial effect + random effect bym
Autoregressive model of order 1 arl
Autoregressive model of order p ar

The Ornstein-Uhlenbeck process ou

User defined structure matrix, type 0 genericO
User defined structure matrix, typel genericl
User defined structure matrix, type2 generic2

Model for correlated effects with Wishart prior (dimen-

sion 1, 2, 3, 4 and 5).
(Quite) general latent model
Random walk of 2nd order on a lattice

Gaussian field with Matern covariance function

Classical measurement error model
Berkson measurement error model

iid1d, iid2d, iid3d, iid4d, iid5d

z

rw2d
matern2d
mec

meb
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Specifying the model — options

Models for the hyper-parameters

Model Name

Normal distribution normal, gaussian
Log-gamma distribution loggamma
Improper flat prior flat

Truncated Normal distribution logtnormal, logtgaussian
Improper flat prior on the log scale logflat

Improper flat prior on the 1/ log scale logiflat

Wishart prior wishart

Beta for correlations betacorrelation
Logit of a Beta logitbeta

Define your own prior expression:
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Internal vs user scale &

e Hyper-parameters (eg correlation coefficients p or precisions 7) are
represented internally using a suitable transformation, eg

1 = log(T)

or 1+
o = log (1_p>
—p

to improve symmetry and approximate Normality
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Internal vs user scale &

e Hyper-parameters (eg correlation coefficients p or precisions 7) are
represented internally using a suitable transformation, eg

Y1 = log(7)
or 1+
Vg = log (1_p>
—p
to improve symmetry and approximate Normality

e |[nitial values are given on the internal scale
e Priors are also defined on the internal scale

e So, when specifying custom values, care is needed!
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Specifying the prior (1)

Consider the model
yi | 0;,0% ~ Normal(6;, %)
0; = a+ Px;

a,8 ' Normal(0,0.001)
logT = —logo® ~ logGamma(1,0.01)
n=100
a=1; b =1

x = rnorm(n)

eta = a + b*x

tau = 100

scale = exp(rnorm(n))

prec = scale*tau

y = rnorm(n, mean = eta, sd = 1/sqrt(prec))

data = list(y=y, x=x)

formula =y ~ 1 + x

result = inla(formula, family = "gaussian", data = data,
control.family = list(hyper = list(

prec = list(prior = "loggamma",param = c(1,0.01),initial = 2))),

scale=scale, keep=TRUE)

summary (result)
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Specifying the prior (1)

Time used:

Pre-processing Running inla Post-processing Total
0.0776 0.0828 0.0189 0.1793
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant kld
(Intercept) 1.0013 0.0074 0.9868  1.0013 1.0168 0
X 0.9936 0.0075 0.9788  0.9936 1.0083 0

The model has no random effects

Model hyperparameters:
mean  sd 0.025quant 0.5quant 0.975quant
Precision for the Gaussian observations 108.00 15.34 80.60 107.09 140.74

Expected number of effective parameters(std dev): 2.298(0.0335)
Number of equivalent replicates : 43.52

Marginal Likelihood: 83.86
CPO and PIT are computed
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Specifying the prior (2)

Consider the model

yi|/L’U2 ~ |“Orn1aK/L,02)
p ~ Normal(0,0.001)
logT = —logo? ~ Normal(0,1)

n = 10
y = rnorm(n)
formula =y ~ 1
result = inla(formula, data = data.frame(y),
control.family = list(hyper = list(
prec = list(prior = "normal",param = c(0,1))))

)

summary (result)
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Specifying the prior (2)

Consider the model

yi|/L’U2 ~ NOHﬂa|0$702)
p ~ Normal(0,0.001)
logT = —logo? ~ Normal(0,1)

n = 10
y = rnorm(n)
formula =y ~ 1
result = inla(formula, data = data.frame(y),
control.family = list(hyper = list(
prec = list(prior = "normal",param = c(0,1))))

)

summary (result)

e NB: INLA thinks in terms of LGMs and GMRFs

e Thus, the common mean for all the observations is specified in terms of a
regression!
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Specifying the prior (2)

Time used:

Pre-processing Running inla Post-processing Total
0.0740 0.0214 0.0221 0.1175
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant kld
(Intercept) -0.3853 0.4077 -1.1939 -0.3853 0.4237 0

The model has no random effects

Model hyperparameters:
mean  sd 0.025quant 0.5quant 0.975quant
Precision for the Gaussian observations 0.6512 0.268 0.2590 0.6089 1.2919

Expected number of effective parameters(std dev): 1.00(0.00)
Number of equivalent replicates : 9.999

Marginal Likelihood: -17.30
CPO and PIT are computed
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Specifying the prior (2)

Running the model in JAGS

model {

for (i in 1:n) {
y[il ~ dnorm(mu,tau)

}
mu ~ dnorm(0,0.001)
log.tau ~ dnorm(0,1)
tau <- exp(log.tau)

}

produces similar results

Inference for Bugs model at "modelHyperPriorNormal.txt", fit using jags,
2 chains, each with 1e+05 iterations (first 9500 discarded), n.thin = 181
n.sims = 1000 iterations saved
mu.vect sd.vect 2.5% 97.5% Rhat n.eff
mu -0.384 0.447 -1.293 0.555 1.000 1000
tau 0.642 0.258 0.233 1.240 1.006 1000
deviance 34.507 1.930 32.645 39.897 1.002 650

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 1.9 and DIC = 36.4
DIC is an estimate of expected predictive error (lower deviance is better).
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Specifying the prior (2) &

e We can also assume different priors for the unstructured (“fixed") effects, eg
suppose we want to fit the model

Yi | My o® ~ Normal(x, 02)
u ~ Normal(10,4)
logT = —logo? ~ Normal(0,1)
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Specifying the prior (2) &

e We can also assume different priors for the unstructured (“fixed") effects, eg
suppose we want to fit the model

yi|/L’U2 ~ NOHﬂa|0$702)

u ~ Normal(10,4)

logT = —logo? ~ Normal(0,1)

e This can be done by using the option control.fixed, eg

result = inla(formula, data = data.frame(y),
control.family = list(hyper = list(
prec = list(prior = "normal",param = c(0, 1))))
control.fixed=list(
mean.intercept=10,prec.intercept=4)
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Specifying the prior (2) &

e We can also assume different priors for the unstructured (“fixed") effects, eg
suppose we want to fit the model

yi|/¢702 ~ NOHﬂa|0$702)
u ~ Normal(10,4)

logT = —logo? ~ Normal(0,1)

e This can be done by using the option control.fixed, eg

result = inla(formula, data = data.frame(y),
control.family = list(hyper = list(
prec = list(prior = "normal",param = c(0, 1))))
control.fixed=list(
mean.intercept=10,prec.intercept=4)

e NB: If the model contains fixed effects for some covariates, non-default priors
can be included using the option

control.fixed=list (mean=list(value),prec=list(value))
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Specifying the prior (2)

Time used:
Pre-processing Running inla Post-processing Total
0.0747 0.0311 0.0164 0.1222

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant kld
(Intercept) 9.5074 0.502 8.5249  9.5067 10.4935 0
-0.3853 0.407 -1.1939 -0.3853 0.4237 0

The model has no random effects

Model hyperparameters:
mean  sd 0.025quant 0.5quant 0.975quant
Precision for the Gaussian observations 0.0218 0.007 0.0105 0.0208  0.0391
0.6512 0.268 0.2590 0.6089  1.2919

Expected number of effective parameters(std dev): 0.0521(0.0129)
1.0000(0.0000)
Number of equivalent replicates : 192.05
9.9999

Marginal Likelihood: 153.84
-17.30
CPO and PIT are computed
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Improving the estimation of the hyperparameters &

e As mentioned earlier, for computational reasons, by default INLA uses a
relatively rough grid to estimate the marginal posterior for the
hyperparameters p(v | y)

e This is generally good enough, but the procedure can be refined

Gianluca Baio ( UCL)
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Improving the estimation of the hyperparameters &

e As mentioned earlier, for computational reasons, by default INLA uses a
relatively rough grid to estimate the marginal posterior for the
hyperparameters p(1) | y)

e This is generally good enough, but the procedure can be refined

o After the model has been estimated using the standard procedure, it is
possible to increase precision in the estimation by re-fitting it using the
command

inla.hyperpar(m, options)

e This modifies the estimation for the hyperparameters and (potentially, but
not necessarily!) that for the parameters
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A more complex model &

e Consider the classic model for seizure counts in a RCT of anti-conversant
therapy in epilepsy (“Epil” in the BUGS manual)

e The data are as follows
Patient Visit1 Visit2 Visit3 Visit4 Trt Base Age

1 5 3 3 3 0 11 31
2 3 5 3 3 0 11 30
59 1 4 3 2 1 12 37

e We replicate the model presented in the BUGS manual, which uses slightly
modified version of the covariates
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A more complex model &

We model

yjk ~  Poisson(s;1)
log(pjx) = o+ aqlog(B;/4) + axTrt; +
asTrt; x log(B;/4) + oy log(Age;) +
a5V, 4+ uj + vig

Qg, ... Q5 i Normal(0, 7,), To known
uj ~ Normal(0,7,), Tu ~ Gammal(a,, by,)
vjr,  ~ Normal(0,7,), Ty ~ Gamma(a,, by)
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A more complex model &

We model

yjk ~  Poisson(s;1)
log(pjx) = o+ aqlog(B;/4) + axTrt; +
azTrt; x log(Bj/4) + aalog(Age;) +
a5V, 4+ uj + vig

Qg, ... Q5 i Normal(0, 7,), To known
uj ~ Normal(0,7,), Tu ~ Gammal(a,, b,,)
vjr,  ~ Normal(0,7,), Ty ~ Gamma(a,, by)

a = (ap,...qas) indicates a set of “fixed” effects for the relevant (re-scaled)
covariates
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A more complex model &

We model

yjk ~  Poisson(s;1)
log(pjx) = o+ aqlog(B;/4) + axTrt; +
azTrt; x log(Bj/4) + aalog(Age;) +
a5V, 4+ uj + vig

g, ... Q5 i Normal(0, 7,,), To known
uj ~ Normal(0,7,), Tu ~ Gammal(a,,, b,)
vjr,  ~ Normal(0,7,), Ty ~ Gamma(a,, by)

a = (ap,...as) indicates a set of “fixed” effects for the relevant (re-scaled)
covariates

u; is an individual “random” effect
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A more complex model &

We model

yjk ~  Poisson(s;1)
log(pjx) = o+ aqlog(B;/4) + axTrt; +
azTrt; x log(Bj/4) + aalog(Age;) +
a5V, 4+ uj + vig

g, ... Q5 i Normal(0, 7,,), To known
uj ~ Normal(0,7,), Tu ~ Gammal(a,, b,)
vjr,  ~ Normal(0,7,), Ty ~ Gamma(a,, by)

a = (ap,...as) indicates a set of “fixed” effects for the relevant (re-scaled)
covariates

u; is an individual “random” effect

v is a subject by visit “random” effect, which accounts for extra-Poisson
variability
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A more complex model

data(Epil)
head (Epil,n=3)
y Trt Base Age V4
15 0 11 31 0 1 1
23 0 11 31 0
33 0 11 31 O

formula <- y ~ log(Base/4) + Trt +
I(Trt * log(Base/4)) + log(Age) + V4 +
f(Ind, model = "iid") + f(rand, model="iid")

m <- inla(formula, family="poisson", data = Epil)

e NB: The variable Ind indicates the individual random effect u;, while the
variable rand is used to model the subject by visit random effect v

e Interactions can be indicated in the R formula using the notation
I(varl * var2)

e The model assumes that the two structured effects are independent. This can
be relaxed and a joint model can be used instead
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A more complex model

Pre-processing Running inla Post-processing
0.3672 0.2780 0.1276 0.7728

Fixed effects:

mean sd 0.025quant 0.5quant 0.975quant kld
(Intercept) -1.3877 1.2107 -3.7621 -1.3913 1.0080 0.0055
log(Base/4) 0.8795 0.1346 0.6144  0.8795 1.1447 0.0127
Trt -0.9524 0.4092 -1.7605 -0.9513 -0.1498 0.0021
I(Trt * log(Base/4)) 0.3506 0.2081 -0.0586  0.3504 0.7611 0.0011
log(Age) 0.4830 0.3555 -0.2206  0.4843 1.1798 0.0007
V4 -0.1032 0.0853 -0.2705 -0.1032 0.0646 0.0003
Random effects:
Name Model
Ind IID model
rand IID model
Model hyperparameters:
mean  sd 0.025quant 0.5quant 0.975quant

Precision for Ind 4.635 1.343 2.591 4.436 7.808
Precision for rand 8.566 2.115 5.206 8.298  13.458

Expected number of effective parameters(std dev): 118.97(8.586)
Number of equivalent replicates : 1.984

Marginal Likelihood: -670.55
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A more complex model

Pre-processing Running inla Post-processing Total
0.3672 0.2780 0.1276 0.7728
(MCMC: approximately 30 mins)

Fixed effects:

mean sd 0.025quant 0.5quant 0.975quant kld
(Intercept) -1.3877 1.2107 -3.7621 -1.3913 1.0080 0.0055
log(Base/4) 0.8795 0.1346 0.6144  0.8795 1.1447 0.0127
Trt -0.9524 0.4092 -1.7605 -0.9513 -0.1498 0.0021
I(Trt * log(Base/4)) 0.3506 0.2081 -0.0586  0.3504 0.7611 0.0011
log(Age) 0.4830 0.3555 -0.2206  0.4843 1.1798 0.0007
V4 -0.1032 0.0853 -0.2705 -0.1032 0.0646 0.0003
Random effects:
Name Model
Ind IID model
rand IID model
Model hyperparameters:
mean  sd 0.025quant 0.5quant 0.975quant

Precision for Ind 4.635 1.343 2.591 4.436 7.808
Precision for rand 8.566 2.115 5.206 8.298  13.458

Expected number of effective parameters(std dev): 118.97(8.586)
Number of equivalent replicates : 1.984

Marginal Likelihood: -670.55
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Conclusions &

e Integrated Nested Laplace Approximation is a very effective tool to estimate
LGMs
— Estimation time can be much lower than for standard MCMC
— Precision of estimation is usually higher than for standard MCMC
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Conclusions &

e Integrated Nested Laplace Approximation is a very effective tool to estimate
LGMs

— Estimation time can be much lower than for standard MCMC
— Precision of estimation is usually higher than for standard MCMC
e MCMC still provides a slightly more flexible approach

— Virtually any model can be fit using JAGS/BUGS
— The range of priors available is wider in an MCMC setting than in INLA
— Documentation and examples is more extensive for standard MCMC models
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Conclusions &

e Integrated Nested Laplace Approximation is a very effective tool to estimate
LGMs
— Estimation time can be much lower than for standard MCMC
— Precision of estimation is usually higher than for standard MCMC

e MCMC still provides a slightly more flexible approach
— Virtually any model can be fit using JAGS/BUGS

— The range of priors available is wider in an MCMC setting than in INLA
— Documentation and examples is more extensive for standard MCMC models

e Nevertheless, INLA proves to be a very flexible tool, which is able to fit a very
wide range of models

Generalised linear (mixed) models

— Log-Gaussian Cox processes

Survival analysis

— Spline smoothing

— Spatio-temporal models

e The INLA setup can be highly specialised (choice of data models, priors and
hyperpriors) although this is a bit less intuitive than (most) MCMC models
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Thank you!

Introduction to INLA



