Sensitivity analysis

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

## Bayesian methods for missing data: part 2 Illustration of a General Strategy

Alexina Mason and Nicky Best

Imperial College London

BAYES 2013, May 21-23, Erasmus University Rotterdam

Sensitivity analysis

Summary 00

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

### Introduction

- In part 1, we discussed the use of Bayesian joint models for dealing with missing data
- Considering a regression context, key points were:
  - subjects with missing responses can be modelled assuming ignorable missingness using just the analysis model
  - a missingness indicator must be modelled to allow for a non-ignorable missingness mechanism
  - a covariate imputation model must be built to include subjects with missing covariates
- In part 2, we will:
  - demonstrate how these ideas can be incorporated into a general strategy for modelling missing data
  - focus on sensitivity analysis
  - use the HAMD data as an illustrative example throughout

Base model

Sensitivity analysis

Summary 00

### Strategy Overview

- The strategy (Mason et al., 2012b) consists of two parts
  - constructing a base model
  - assessing conclusions from this base model against a selection of well chosen sensitivity analyses
- It allows
  - the uncertainty from the missing data to be taken into account
  - · additional sources of information to be utilised
- It can be implemented using currently available software, e.g. WinBUGS

Base model

Sensitivity analysis

Summary 00

### Schematic Diagram



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・





・ロト・4回ト・4回ト・4回ト

Sensitivity analysis

### Illustrative Example: HAMD revisited

- Antidepressant clinical trial, comparing 3 treatments
- Subjects rated on HAMD score on 5 weekly visits
- Objective is to compare the effects of the 3 treatments on the improvement in HAMD score over time



▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

### Before the strategy: step 0

- The strategy consists of a series of model building steps
- Before starting, the missingness should be explored to determine
  - which steps are required?
  - are any other modifications needed?
- In particular
  - which variables have missing values?
  - what is the extent and pattern of missingness?
  - what are plausible explanations for the missingness?

Sensitivity analysis

Summary 00

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

### HAMD example: step 0

Which variables have missing values?

- HAMD score (model response) missing in weeks 3-5
- No covariate missingness  $\Rightarrow$  CIM not needed (omit step 2)

Sensitivity analysis

Summary 00

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

### HAMD example: step 0

Which variables have missing values?

- HAMD score (model response) missing in weeks 3-5
- No covariate missingness  $\Rightarrow$  CIM not needed (omit step 2)

What is the extent and pattern of missingness?

Percentage of missingness by treatment and week

|        | treat. 1 | treat. 2 | treat. 3 | all treatments |
|--------|----------|----------|----------|----------------|
| week 2 | 11.7     | 22.0     | 9.3      | 14.2           |
| week 3 | 19.2     | 29.7     | 16.3     | 21.5           |
| week 4 | 36.7     | 35.6     | 27.1     | 33.0           |

level and pattern of missingness inconsistent across treatments

Sensitivity analysis

Summary 00

### HAMD example: step 0 continued

### What is the extent and pattern of missingness? (continued)



- individuals have different profiles if they dropped out rather than remained in the study
- the treatments show different patterns

Sensitivity analysis

### HAMD example: step 0 continued II

### What are plausible explanations for the missingness?

- patients for whom the treatment is successful and get better may decide not to continue in the study
- patients not showing any improvement or feeling worse, may seek alternative treatment and drop-out of the study
- in either case, informative missingness
  ⇒ MoRM needed (step 3)

### Part 1 (steps 1-3): constructing a base model

- This part involves building a joint model as follows:
  - 1. choose an analysis model
  - 2. add a covariate imputation model
  - 3. add a model of response missingness
- Optionally, the amount of available information can be increased by incorporating data from other sources and/or expert knowledge
- The strategy
  - allows informative missingness in the response
  - but assumes that the covariates are MAR
- However, it can be adapted to reflect alternative assumptions

Base model

Sensitivity analysis

Summary 00

### HAMD example: analysis model (step 1)



Base model

Sensitivity analysis

Summary 00

HAMD example: covariate imputation model (step 2)



CIM = Covariate Imputation Model

- No missing covariates in this example, so not required
- If data includes missing covariates, set up CIM to produce realistic imputations at this stage
- See part 1 for details
- Without a CIM, records with missing covariates cannot be included

Base model

Sensitivity analysis

Summary 00

HAMD ex.: model of response missingness (step 3)



MoRM = Model of Response Missingness

As discussed in part 1 use

 $m_{iw} \sim {\sf Bernoulli}(p_{iw})$ 

$$\operatorname{logit}(p_{iw}) = \theta_0 + \delta(y_{iw} - \bar{y})$$

where  $\bar{y}$  is mean of observed ys

- Allows informative missingness in the response
- Dependence is on current HAMD score

Base model

Sensitivity analysis

Summary 00

### Optional step: seek additional data



- Additional data can help with parameter estimation
- Most useful with missing covariates
- Omitted for HAMD example

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

### Part 2 (steps 4-6): sensitivity analysis

- Sensitivity analysis is essential because assumptions are untestable from the data
- There are many possible options, and the appropriate choice is problem dependent
- We propose two types of sensitivity analysis:
  - 1. an assumption sensitivity
  - 2. a parameter sensitivity

Base model

Sensitivity analysis

Summary 00

### Step 4 - assumption sensitivity



- Assumption sensitivity forms alternative models by changing the assumptions in the different base sub-models
- Key assumptions include:
  - AM error distribution
  - transformation of the AM response
  - functional form of the MoRM
- Stage 1: change single aspect to assess effect
- Stage 2: combine several changes

### HAMD example: assumption sensitivity (step 4)

There are many options, including but not limited to the following

- Analysis model:
  - use a t<sub>4</sub> rather than normal error distribution
  - use an autoregressive model, AR(1), rather than random effects
  - include centre effects
  - allow for non-linearity by including a quadratic term
- Model of response missingness:
  - allow dependence on change in HAMD score
  - allow dependence on treatment
  - allow for non-linear relationship (piece-wise linear)

### HAMD example: assumption sensitivity (step 4)

There are many options, including but not limited to the following

- Analysis model:
  - use a t<sub>4</sub> rather than normal error distribution
  - use an autoregressive model, AR(1), rather than random effects
  - include centre effects
  - allow for non-linearity by including a quadratic term
- Model of response missingness:
  - allow dependence on change in HAMD score
  - allow dependence on treatment
  - allow for non-linear relationship (piece-wise linear)

Sensitivity analysis

### Example: results from assumption sensitivity





Base model

Sensitivity analysis

Summary 00

### Step 5 - parameter sensitivity



- Parameter sensitivity involves running the base model with the MoRM parameters controlling the extent of the departure from MAR fixed to values in a plausible range
- Expert knowledge can help with setting the parameter sensitivity range

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

### HAMD example: parameter sensitivity (step 5) MoRM equation for Base Case

$$logit(p_{iw}) = \theta_0 + \delta(y_{iw} - \bar{y})$$

- $\delta$  estimated as 0.08 (0.04,0.11) in Base Case
- The value of  $\delta$  controls the degree of departure from MAR missingness
- $\delta$  is difficult to estimate for a model with vague prior
- Run a series of models with  $\delta$  fixed using point prior
  - 5 variants: values  $\{-1, -0.5, 0, 0.5, 1\}$
  - +  $\delta$  corresponds to the log odds ratio of a missing response per point increase in HAMD score
  - range (-1,1) corresponds to assuming odds of non-response per unit increment in HAMD score ranges from  $\approx$  3 to  $\frac{1}{3}$
  - $\delta = 0$  variant is equivalent to assuming the response is MAR

Sensitivity analysis

### HAMD example: results from parameter sensitivity





Base model

Sensitivity analysis

Summary 00

### HAMD example: results from parameter sensitivity II



- Second parameter sensitivity based on AS3 (separate δ for each treatment)
- Investigate difference between treatments 1 and 2
- Fix δ<sub>1</sub> and δ<sub>2</sub> to values in range (-1,1)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

• Fix  $\delta_3 = -0.2$  (value suggested by AS3)

Base model

Sensitivity analysis

Summary 00

### Optional step: elicit expert knowledge



### HAMD example: sample elicitation questions

### Q1 Which variables do you think will help explain non-response?

A improvement in HAMD score since last visit (HAMD improvement)

Q2 What shape do you expect for the relationship between HAMD improvement and the probability of non-response?



A (d) 'v'

Q3 What value of HAMD improvement will minimise non-response?

A improvement of 5 points

## Q4 What other values of HAMD improvement should be used for elicitation?

A no improvement and improvement of 15 points at the time on the second second

Base model

Sensitivity analysis

Summary 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回目 のへで

### HAMD example: sample elicitation continued



Base model

Sensitivity analysis

Summary 00

### HAMD example: sample elicitation continued



Q5 Out of 100 subjects, how many would you expect not to respond if their HAMD score improves by 5?

Base model

Sensitivity analysis

Summary 00

### HAMD example: sample elicitation continued



Q5 Out of 100 subjects, how many would you expect not to respond if their HAMD score improves by 5?

A 10

Base model

Sensitivity analysis

Summary 00

### HAMD example: sample elicitation continued



Q5 Out of 100 subjects, how many would you expect not to respond if their HAMD score improves by 5?

A 10

• Similar questions can be used to elicit uncertainty

Sensitivity analysis

Summary 00

### HAMD example: sample elicitation continued



Q5 Out of 100 subjects, how many would you expect not to respond if their HAMD score improves by 5?

#### A 10

- Similar questions can be used to elicit uncertainty
- Elicit information at other values of HAMD improvement in the same way

Sensitivity analysis

Summary 00

### HAMD example: sample elicitation continued



Q5 Out of 100 subjects, how many would you expect not to respond if their HAMD score improves by 5?

A 10

- Similar questions can be used to elicit uncertainty
- Elicit information at other values of HAMD improvement in the same way

Sensitivity analysis

Summary

### HAMD example: sample elicitation continued



Q5 Out of 100 subjects, how many would you expect not to respond if their HAMD score improves by 5?

A 10

- Similar questions can be used to elicit uncertainty
- Elicit information at other values of HAMD improvement in the same way
- This information can be converted into informative prior on  $\boldsymbol{\delta}$

$$logit(p_i) = \theta_0 + f(y_{iw}, y_{i(w-1)}; \delta)$$

Can be incorporated as part of base case or used to inform sensitivity analysis

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

### HAMD example: potential complications

- Probability of non-response may depend on other factors, e.g.
  - treatment
  - how depressed patient was previous week
- Multiple factors complicate elicitation
  - · need to allow for an interaction between factors
  - ask questions of the form:

Out of 100 subjects, how many would you expect not to respond if their HAMD score improves from 20 to 15?'

· convert to joint rather than independent priors

Sensitivity analysis

Summary 00

### Elicitation: comment

Recall MoRM equation for Base Case

$$\operatorname{logit}(p_{iw}) = \theta_0 + \delta(y_{iw} - \bar{y})$$

- The parameters associated with the response,  $\delta$ , are identified by the parametric assumptions in
  - the analysis model (AM)
  - the model of response missingness (MoRM)
- This information is limited, so estimation difficulties can be encountered with vague priors
- If detailed elicitation is impractical, some information still helps
- In particular, ask questions that provide guidance on
  - variables to include in the model of response missingness
  - shapes of relationship between variables and probability of non-response
  - signs of parameters

Base model

Sensitivity analysis

Summary 00

### Step 6 - determine robustness of conclusions



- Examine results of sensitivity analyses to establish how much the quantities of interest vary
- If the conclusions are robust, report this
- Otherwise
  - seek more information (optional steps)
  - determine a region of high
    plausibility
  - · recognise uncertainty

Base model

Sensitivity analysis

Summary 00

### Assessing model fit

- A model's fit to observed data can be assessed
- However, its fit to unobserved data cannot be assessed
  - $\Rightarrow$  sensitivity analysis is essential
- DIC is routinely used by Bayesian statisticians to compare models, but
  - using DIC in the presence of missing data is not straightforward
  - the DIC automatically generated by WinBUGS is misleading (Mason et al., 2012a)
- Data not used in model estimation may be helpful in assessing model fit
  - compare model predictions against additional data

EL OQA

## HAMD example: are conclusions robust? (step 6)

Consider comparison of Treatment 1 (T1) and Treatment 2 (T2)

- Base case strong evidence T2 is more effective than T1
- Assumption sensitivity suggests strength of effect is uncertain
- In particular, AS3 suggests larger difference between T2 and T1
  - T1:  $\delta > 0 \Rightarrow$  patient less likely to dropout if treatment effective
  - T2:  $\delta < 0 \Rightarrow$  patient more likely to dropout if treatment effective
  - is this plausible?
  - different side-effects associated with each treatment?
  - are side-effect data available?
- Parameter sensitivity analysis examined AS3 further
  - ordering is only reversed if signs of  $\delta$  are switched
  - if implausible, conclude treatment ordering robust to plausible sensitivities
  - otherwise report assumptions required to reverse ordering

### Adaptions and extensions

- There are situations where it may be necessary to adapt this strategy
- Step 2 can be elaborated to allow MNAR covariates
- Steps 3 and 5 can be omitted if informative missingness in the response is implausible
- Could distinguish between different types of non-response
  - set up a missingness indicator with separate categories for each type of non-response
  - model using multinomial regression
- Bayesian models have the advantage of being fully coherent, but with large datasets or large numbers of covariates with missingness may be computationally challenging to fit

Sensitivity analysis

Summary •0

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

# What does the Bayesian approach offer for missing data problems?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

# What does the Bayesian approach offer for missing data problems?

Bayesian methods are probably the most powerful and most general methods for dealing with missing data

• Naturally accommodate missing data without requiring new techniques for inference

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

# What does the Bayesian approach offer for missing data problems?

- Naturally accommodate missing data without requiring new techniques for inference
- Bayesian framework is well suited to building complex models by linking smaller sub-models into a coherent joint model for the full data

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

# What does the Bayesian approach offer for missing data problems?

- Naturally accommodate missing data without requiring new techniques for inference
- Bayesian framework is well suited to building complex models by linking smaller sub-models into a coherent joint model for the full data
- Bayesian approach lends itself naturally to sensitivity analysis through different choices of prior distributions encoding assumptions about the missing data process

# What does the Bayesian approach offer for missing data problems?

- Naturally accommodate missing data without requiring new techniques for inference
- Bayesian framework is well suited to building complex models by linking smaller sub-models into a coherent joint model for the full data
- Bayesian approach lends itself naturally to sensitivity analysis through different choices of prior distributions encoding assumptions about the missing data process
- Offers possibility of including informative prior information about missing data process

# What does the Bayesian approach offer for missing data problems?

- Naturally accommodate missing data without requiring new techniques for inference
- Bayesian framework is well suited to building complex models by linking smaller sub-models into a coherent joint model for the full data
- Bayesian approach lends itself naturally to sensitivity analysis through different choices of prior distributions encoding assumptions about the missing data process
- Offers possibility of including informative prior information about missing data process
- But models can become computationally challenging...

Sensitivity analysis

### Acknowledgements and References

- Thanks to Sylvia Richardson
- Funding by ESRC: the BIAS project (PI N Best), based at Imperial College, London

www.bias-project.org.uk/research.htm

Daniels, M. J. and Hogan, J. W. (2008). Missing Data In Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis. Chapman & Hall.

Diggle, P. and Kenward, M. G. (1994). Informative Drop-out in Longitudinal Data Analysis (with discussion). Journal of the Royal Statistical Society, Series C (Applied Statistics), 43, (1), 49–93.

 Mason, A., Richardson, S., and Best, N. (2012*a*). Two-pronged strategy for using DIC to compare selection models with non-ignorable missing responses. *Bayesian Analysis*, 7, (1), 109–46.

Mason, A., Richardson, S., Plewis, I., and Best, N. (2012b). Strategy for Modelling Nonrandom Missing Data Mechanisms in Observational Studies Using Bayesian Methods. *Journal of Official Statistics*, 28, (2), 279–302.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

## How the AM distributional assumptions are used

Illustrative example (Daniels & Hogan (2008), Section 8.3.2)

- Consider a cross-sectional setting with
  - a single response
  - no covariates
- Suppose we specify a linear MoM,

 $logit(p_i) = \theta_0 + \delta y_i$ 



- If we assume the AM follows a normal distribution, y<sub>i</sub> ~ N(μ<sub>i</sub>, σ<sup>2</sup>)
  must fill in the right tail ⇒ δ > 0
- If we assume the AM follows a skew-normal distribution

• 
$$\Rightarrow \delta = \mathbf{0}$$

# Summary of required sub-models for a Bayesian analysis

| Type of<br>Variable with | Missingness<br>Type | Analysis<br>Model | Covariate<br>Imputation | Missing<br>Mechanism |
|--------------------------|---------------------|-------------------|-------------------------|----------------------|
| wissing values           |                     |                   | woder                   | woder                |
| response                 | ignorable           | $\checkmark$      | ×                       | ×                    |
| response                 | non-ignorable       | $\checkmark$      | ×                       | $\checkmark$         |
| covariate                | ignorable           | $\checkmark$      | $\checkmark$            | ×                    |
| covariate                | non-ignorable       | $\checkmark$      | $\checkmark$            | $\checkmark$         |