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Introduction

• In part 1, we discussed the use of Bayesian joint models for
dealing with missing data

• Considering a regression context, key points were:
• subjects with missing responses can be modelled assuming

ignorable missingness using just the analysis model
• a missingness indicator must be modelled to allow for a

non-ignorable missingness mechanism
• a covariate imputation model must be built to include subjects with

missing covariates

• In part 2, we will:
• demonstrate how these ideas can be incorporated into a general

strategy for modelling missing data
• focus on sensitivity analysis
• use the HAMD data as an illustrative example throughout
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Strategy Overview

• The strategy (Mason et al., 2012b) consists of two parts
• constructing a base model
• assessing conclusions from this base model against a selection of

well chosen sensitivity analyses

• It allows
• the uncertainty from the missing data to be taken into account
• additional sources of information to be utilised

• It can be implemented using currently available software,
e.g. WinBUGS
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Schematic Diagram
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Schematic Diagram: constructing a base model
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Strategy consists of two parts:

• Constructing a base model

Assessing conclusions from
this base model against a
selection of well chosen
sensitivity analyses
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Schematic Diagram: sensitivity analysis
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Illustrative Example: HAMD revisited
• Antidepressant clinical trial, comparing 3 treatments
• Subjects rated on HAMD score on 5 weekly visits
• Objective is to compare the effects of the 3 treatments on the

improvement in HAMD score over time
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Before the strategy: step 0

• The strategy consists of a series of model building steps

• Before starting, the missingness should be explored to
determine

• which steps are required?
• are any other modifications needed?

• In particular
• which variables have missing values?
• what is the extent and pattern of missingness?
• what are plausible explanations for the missingness?
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HAMD example: step 0

Which variables have missing values?

• HAMD score (model response) missing in weeks 3-5

• No covariate missingness⇒ CIM not needed (omit step 2)

What is the extent and pattern of missingness?

Percentage of missingness by treatment and week

treat. 1 treat. 2 treat. 3 all treatments
week 2 11.7 22.0 9.3 14.2
week 3 19.2 29.7 16.3 21.5
week 4 36.7 35.6 27.1 33.0

• level and pattern of missingness inconsistent across treatments
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HAMD example: step 0 continued
What is the extent and pattern of missingness? (continued)
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• individuals have different profiles if they dropped out rather than
remained in the study

• the treatments show different patterns
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HAMD example: step 0 continued II

What are plausible explanations for the missingness?

• patients for whom the treatment is successful and get better may
decide not to continue in the study

• patients not showing any improvement or feeling worse, may
seek alternative treatment and drop-out of the study

• in either case, informative missingness
⇒ MoRM needed (step 3)
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Part 1 (steps 1-3): constructing a base model

• This part involves building a joint model as follows:
1. choose an analysis model
2. add a covariate imputation model
3. add a model of response missingness

• Optionally, the amount of available information can be increased
by incorporating data from other sources and/or expert
knowledge

• The strategy
• allows informative missingness in the response
• but assumes that the covariates are MAR

• However, it can be adapted to reflect alternative assumptions
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HAMD example: analysis model (step 1)
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1: select AM using
complete cases

AM = Analysis Model

As discussed in part 1
• a hierarchical model with

random intercepts and
random slopes is
reasonable
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HAMD example: covariate imputation model (step 2)
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CIM = Covariate
Imputation Model

• No missing covariates in
this example, so not
required

• If data includes missing
covariates, set up CIM to
produce realistic
imputations at this stage

• See part 1 for details

• Without a CIM, records with
missing covariates cannot
be included
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HAMD ex.: model of response missingness (step 3)
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MoRM = Model of
Response Missingness

As discussed in part 1 use

miw ∼ Bernoulli(piw )

logit(piw ) = θ0 + δ(yiw − ȳ)

where ȳ is mean of observed ys

• Allows informative
missingness in the
response

• Dependence is on current
HAMD score
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Optional step: seek additional data
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• Additional data can help with
parameter estimation

• Most useful with missing
covariates

• Omitted for HAMD example
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Part 2 (steps 4-6): sensitivity analysis

• Sensitivity analysis is essential because assumptions are
untestable from the data

• There are many possible options, and the appropriate choice is
problem dependent

• We propose two types of sensitivity analysis:
1. an assumption sensitivity
2. a parameter sensitivity
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Step 4 - assumption sensitivity
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4.
ASSUMPTION
SENSITIVITY

• Assumption sensitivity
forms alternative models by
changing the assumptions
in the different base
sub-models

• Key assumptions include:
• AM error distribution
• transformation of the AM

response
• functional form of the

MoRM

• Stage 1: change single
aspect to assess effect

• Stage 2: combine several
changes
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HAMD example: assumption sensitivity (step 4)

There are many options, including but not limited to the following

• Analysis model:
• use a t4 rather than normal error distribution
• use an autoregressive model, AR(1), rather than random effects
• include centre effects
• allow for non-linearity by including a quadratic term

• Model of response missingness:
• allow dependence on change in HAMD score
• allow dependence on treatment
• allow for non-linear relationship (piece-wise linear)
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Example: results from assumption sensitivity
AS3: δT1 0.33 (0.01,0.62); δT 2 -0.41 (-0.63,-0.20); δT3 -0.23 (-0.42,-0.02)

treatment comparison (difference in slope parameters)
−2 −1 0 1 2

BASE

AS1

AS2

AS3

BASE

AS1

AS2

AS3

BASE

AS1

AS2

AS3

1 v 2

1 v 3

2 v 3

AS1 = t4 errors

AS2 = HAMD change

AS3 = AS2 + treatment dependence

first treatment better second treatment better
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Step 5 - parameter sensitivity
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5:
PARAMETER
SENSITIVITY

• Parameter sensitivity involves
running the base model with
the MoRM parameters
controlling the extent of the
departure from MAR fixed to
values in a plausible range

• Expert knowledge can help
with setting the parameter
sensitivity range
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HAMD example: parameter sensitivity (step 5)
MoRM equation for Base Case

logit(piw ) = θ0 + δ(yiw − ȳ)

• δ estimated as 0.08 (0.04,0.11) in Base Case

• The value of δ controls the degree of departure from MAR
missingness

• δ is difficult to estimate for a model with vague prior

• Run a series of models with δ fixed using point prior
• 5 variants: values {−1,−0.5,0,0.5,1}
• δ corresponds to the log odds ratio of a missing response per

point increase in HAMD score
• range (-1,1) corresponds to assuming odds of non-response per

unit increment in HAMD score ranges from ≈ 3 to 1
3

• δ = 0 variant is equivalent to assuming the response is MAR
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HAMD example: results from parameter sensitivity
MoRM equation: logit(piw ) = θ0 + δ(yiw − ȳ)

treatment comparison (difference in slope parameters)
−3 −2 −1 0 1 2

δ = −1
δ = −0.5
δ = 0
δ = 0.5
δ = 1

δ = −1
δ = −0.5
δ = 0
δ = 0.5
δ = 1

δ = −1
δ = −0.5
δ = 0
δ = 0.5
δ = 1

1 v 2

1 v 3

2 v 3

first treatment better second treatment better



Background Base model Sensitivity analysis Summary

HAMD example: results from parameter sensitivity II
posterior mean for contrast
 between treatments 1 and 2
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• Second parameter
sensitivity based on AS3
(separate δ for each
treatment)

• Investigate difference
between treatments 1
and 2

• Fix δ1 and δ2 to values in
range (-1,1)

• Fix δ3 = −0.2 (value
suggested by AS3)
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Optional step: elicit expert knowledge
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• Expert knowledge can be
elicited and incorporated using
informative priors

• Focus on parameters not well
identified by the data

• particularly those associated
with the degree of departure
from MAR

• Eliciting priors on parameters
directly is difficult

• A better strategy is
• elicit information about the

probability of response
• convert to informative priors
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HAMD example: sample elicitation questions
Q1 Which variables do you think will help explain non-response?

A improvement in HAMD score since last visit (HAMD improvement)

Q2 What shape do you expect for the relationship between HAMD
improvement and the probability of non-response?
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A (d) ‘v’

Q3 What value of HAMD improvement will minimise non-response?
A improvement of 5 points

Q4 What other values of HAMD improvement should be used for
elicitation?

A no improvement and improvement of 15 points
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HAMD example: sample elicitation continued
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Q5 Out of 100 subjects, how many
would you expect not to respond
if their HAMD score improves by
5?

A 10

• Similar questions can be used to
elicit uncertainty

• Elicit information at other values
of HAMD improvement in the
same way

• This information can be converted into informative prior on δ

logit(pi) = θ0 + f (yiw , yi(w−1); δ)

• Can be incorporated as part of base case or used to inform
sensitivity analysis
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HAMD example: sample elicitation continued
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HAMD example: sample elicitation continued
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HAMD example: sample elicitation continued
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HAMD example: sample elicitation continued
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HAMD example: sample elicitation continued

HAMD improvement

no
n−

re
sp

on
se

●

●

●

●

●

●

0 5 15

0

20

40

60

80

100
Q5 Out of 100 subjects, how many

would you expect not to respond
if their HAMD score improves by
5?

A 10

• Similar questions can be used to
elicit uncertainty

• Elicit information at other values
of HAMD improvement in the
same way

• This information can be converted into informative prior on δ

logit(pi) = θ0 + f (yiw , yi(w−1); δ)

• Can be incorporated as part of base case or used to inform
sensitivity analysis



Background Base model Sensitivity analysis Summary

HAMD example: sample elicitation continued
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HAMD example: potential complications

• Probability of non-response may depend on other factors, e.g.
• treatment
• how depressed patient was previous week

• Multiple factors complicate elicitation
• need to allow for an interaction between factors
• ask questions of the form:

Out of 100 subjects, how many would you expect not to
respond if their HAMD score improves from 20 to 15?’

• convert to joint rather than independent priors
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Elicitation: comment
Recall MoRM equation for Base Case

logit(piw ) = θ0 + δ(yiw − ȳ)

• The parameters associated with the response, δ, are identified
by the parametric assumptions in

• the analysis model (AM)
• the model of response missingness (MoRM)

• This information is limited, so estimation difficulties can be
encountered with vague priors

• If detailed elicitation is impractical, some information still helps

• In particular, ask questions that provide guidance on
• variables to include in the model of response missingness
• shapes of relationship between variables and probability of

non-response
• signs of parameters
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Step 6 - determine robustness of conclusions

NOYES
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• Examine results of sensitivity
analyses to establish how
much the quantities of interest
vary

• If the conclusions are robust,
report this

• Otherwise
• seek more information

(optional steps)
• determine a region of high

plausibility
• recognise uncertainty
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Assessing model fit

• A model’s fit to observed data can be assessed

• However, its fit to unobserved data cannot be assessed
⇒ sensitivity analysis is essential

• DIC is routinely used by Bayesian statisticians to compare
models, but

• using DIC in the presence of missing data is not straightforward
• the DIC automatically generated by WinBUGS is misleading

(Mason et al., 2012a)

• Data not used in model estimation may be helpful in assessing
model fit

• compare model predictions against additional data



Background Base model Sensitivity analysis Summary

HAMD example: are conclusions robust? (step 6)
Consider comparison of Treatment 1 (T1) and Treatment 2 (T2)

• Base case - strong evidence T2 is more effective than T1

• Assumption sensitivity suggests strength of effect is uncertain

• In particular, AS3 suggests larger difference between T2 and T1
• T1: δ > 0⇒ patient less likely to dropout if treatment effective
• T2: δ < 0⇒ patient more likely to dropout if treatment effective
• is this plausible?
• different side-effects associated with each treatment?
• are side-effect data available?

• Parameter sensitivity analysis examined AS3 further
• ordering is only reversed if signs of δ are switched
• if implausible, conclude treatment ordering robust to plausible

sensitivities
• otherwise report assumptions required to reverse ordering
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Adaptions and extensions

• There are situations where it may be necessary to adapt this
strategy

• Step 2 can be elaborated to allow MNAR covariates

• Steps 3 and 5 can be omitted if informative missingness in the
response is implausible

• Could distinguish between different types of non-response
• set up a missingness indicator with separate categories for each

type of non-response
• model using multinomial regression

• Bayesian models have the advantage of being fully coherent, but
with large datasets or large numbers of covariates with
missingness may be computationally challenging to fit
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What does the Bayesian approach offer for missing
data problems?

Bayesian methods are probably the most powerful and most general
methods for dealing with missing data

• Naturally accommodate missing data without requiring new
techniques for inference

• Bayesian framework is well suited to building complex models by
linking smaller sub-models into a coherent joint model for the full
data

• Bayesian approach lends itself naturally to sensitivity analysis
through different choices of prior distributions encoding
assumptions about the missing data process

• Offers possibility of including informative prior information about
missing data process

• But models can become computationally challenging...
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How the AM distributional assumptions are used
Illustrative example (Daniels & Hogan (2008), Section 8.3.2)

• Consider a cross-sectional
setting with

• a single response
• no covariates

• Suppose we specify a linear
MoM,

logit(pi) = θ0 + δyi
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• If we assume the AM follows a normal distribution, yi ∼ N(µi , σ
2)

• must fill in the right tail⇒ δ > 0
• If we assume the AM follows a skew-normal distribution

• ⇒ δ = 0



Summary of required sub-models for a Bayesian
analysis

Type of Missingness Analysis Covariate Missing
Variable with Type Model Imputation Mechanism

Missing Values Model Model

response ignorable ! % %

response non-ignorable ! % !

covariate ignorable ! ! %

covariate non-ignorable ! ! !
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