Bayesian variable selection for identifying subgroups in cost-effectiveness analysis

Results

Application with real data

Conclusions

Context

Model

Simulation exercise

Elías Moreno¹ Francisco–Javier Girón² Francisco–José Vázquez–Polo³ Miguel Negrín³

¹University of Granada, Spain ²University of Málaga, Spain ³University of Las Palmas de Gran Canaria, Spain

Context o	Model	Simulation exercise	Results	Application with real data	Conclusions
Outline					

Context

• Nixon and Thompson (2005) model

2 Model

3 Simulation exercise

4 Results

6 Application with real data

6 Conclusions

 Policy–makers interest cost–effectiveness for patient subgroups (NICE Decision Support Unit, 2007)

- Policy–makers interest cost–effectiveness for patient subgroups (NICE Decision Support Unit, 2007)
- Heterogeneity in incemental cost–effectiveness analysis (Sculpher, 2010)

Context ○	Model	Simulation exercise	Results	Application with real data	Conclusions

- Policy–makers interest cost–effectiveness for patient subgroups (NICE Decision Support Unit, 2007)
- Heterogeneity in incemental cost–effectiveness analysis (Sculpher, 2010)
- Regression methods have been proposed as an appropriate method in cost-efectiveness analysis where the subgroups analysis can be carried out with the inclusion of interactions between treatment and subgroup.

Context ○	Model	Simulation exercise	Results	Application with real data	Conclusions

- Policy–makers interest cost–effectiveness for patient subgroups (NICE Decision Support Unit, 2007)
- Heterogeneity in incemental cost–effectiveness analysis (Sculpher, 2010)
- Regression methods have been proposed as an appropriate method in cost-efectiveness analysis where the subgroups analysis can be carried out with the inclusion of interactions between treatment and subgroup.
- References: Willan et al. (2004), Nixon and Thompson (2005), Vázquez–Polo et al. (2005), Hoch et al. (2006), Manca et al. (2007), Willan and Kowgier (2008)

Context ○	Model	Simulation exercise	Results	Application with real data	Conclusions

- Policy–makers interest cost–effectiveness for patient subgroups (NICE Decision Support Unit, 2007)
- Heterogeneity in incemental cost–effectiveness analysis (Sculpher, 2010)
- Regression methods have been proposed as an appropriate method in cost-efectiveness analysis where the subgroups analysis can be carried out with the inclusion of interactions between treatment and subgroup.
- References: Willan et al. (2004), Nixon and Thompson (2005), Vázquez–Polo et al. (2005), Hoch et al. (2006), Manca et al. (2007), Willan and Kowgier (2008)
- Moreno et al. (2012) proposed an analysis of subgroups based on an optimal Bayesian variable selector.

Context ○	Model	Simulation exercise	Results	Application with real data	Conclusions

- Policy–makers interest cost–effectiveness for patient subgroups (NICE Decision Support Unit, 2007)
- Heterogeneity in incemental cost–effectiveness analysis (Sculpher, 2010)
- Regression methods have been proposed as an appropriate method in cost-efectiveness analysis where the subgroups analysis can be carried out with the inclusion of interactions between treatment and subgroup.
- References: Willan et al. (2004), Nixon and Thompson (2005), Vázquez–Polo et al. (2005), Hoch et al. (2006), Manca et al. (2007), Willan and Kowgier (2008)
- Moreno et al. (2012) proposed an analysis of subgroups based on an optimal Bayesian variable selector.
- In this work we show a simulation study to compare both methods.

Context •	Model	Simulation exercise	Results	Application with real data	Conclusions				
Nixon and Thompson (2005) model									
Nixon and Thompson (2005) model									
Dif	ferences l	petweeen subgro	oups						

Modelization for a patient j in arm i.

$$\begin{split} \mathsf{E}_{ij} &\sim \textit{Dist}(\phi_{\textit{Eij}}, \sigma_{\textit{Ei}}) \\ \mathsf{G}_{ij} &\sim \textit{Dist}(\phi_{\textit{Cij}}, \sigma_{\textit{Ci}}) \\ \phi_{\textit{Eij}} &= \mu_{\textit{Ei}} + \beta_i (\textit{C}_{ij} - \phi_{\textit{Cij}}) + \sum \gamma_{\textit{E}} \textit{x}_{ij} + \sum \delta_{\textit{E}} \textit{I}_i \textit{x}_{ij} \\ \phi_{\textit{Cij}} &= \mu_{\textit{Ci}} + \sum \gamma_{\textit{C}} \textit{x}_{ij} + \sum \delta_{\textit{C}} \textit{I}_i \textit{x}_{ij} \end{split}$$

Comments

- Covariates have the same influence for both treatments, except subgroups.
- Detecting subgroups is reduced to an hypothesis test about the statistical relevance of parameters δ.
- Its modelization is appropriate for Normal and Gamma models.

Context	Model	Simulation exercise	Results	Application with real data	Conclusions

Model proposed by Moreno et al. (2012)

Differences betweeen subgroups

Modelization for a patient *j* in arm *i*.

$$(\mathsf{E}_{ij}, C_{ij}) \sim MVN((\phi_{Eij}, \phi_{Cij}), \Sigma_i) \\ \phi_{Eij} = \beta_{0i} + \sum \beta_i x_{ij} \\ \phi_{Cij} = \gamma_{0i} + \sum \gamma_i x_{ij}$$

Comments

- Objective Bayesian variable selection is carried out to detect the covariates with influence. Selecting covariates define a subgroup over the effectiveness and (or) cost.
- Normal and Log-normal distributions can be considered.

Context	Model	Simulation exercise	Results	Application with real data	Conclusions

Bivariate Objective Bayesian Variable Selection

Posterior probability for each model

$$P(M_j | \mathbf{Y}, \mathbf{X}_j) = \frac{B_{j1}(\mathbf{Y}, \mathbf{X}_j)}{1 + \sum_{k=2}^{2^{p-1}} B_{k1}(\mathbf{Y}, \mathbf{X}_k)}$$

Intrinsic prior (Torres et al., 2011)

$$\begin{aligned} \pi_1'(\mathbf{B}_1, \sigma_1) &= c \frac{1}{\sigma_1}, \ \pi_j'(\mathbf{B}_j, \sigma_j | \mathbf{B}_1, \sigma_1) = \\ N_{j \times 2} \left[\mathbf{B}_j | \Delta_j, \frac{n}{j+1} (\sigma_j^2 + \sigma_1^2) \left((\mathbf{X}_j^t \mathbf{X}_j)^{-1} \otimes \mathbf{V} \right) \right] \times \frac{2\sigma_j}{\sigma_1^2 (1 + \sigma_j^2 / \sigma_1^2)}, \end{aligned}$$
where $\Delta = \left(\mathbf{0}_{(j-1) \times 2} \mathbf{B}_1 \right).$

Context	Model	Simulation exercise	Results	Application with real data	Conclusions

Bivariate Objective Bayesian Variable Selection

Bayes factor for intrinsic priors

$$\begin{split} B_{k1}(\mathbf{Y}, \mathbf{X}_k) &= \\ 2(k+1)^{(k-1)} \int_0^{\pi/2} \frac{\sin(\varphi)^{2(k-1)+1} (n+(k+1)\sin^2 \varphi)^{(n-k)}}{\cos(\varphi)^{-1} [(k+1)\sin^2 \varphi + n\mathcal{B}_{k1}]^{(n-1)}} d\varphi. \\ \text{where} \\ \mathcal{B}_{k1} &= \frac{tr[\mathbf{H}_{\mathbf{X}_k} \mathbf{Y} \mathbf{V}^{-1} \mathbf{Y}^t]}{tr[\mathbf{H}_{\mathbf{X}_1} \mathbf{Y} \mathbf{V}^{-1} \mathbf{Y}^t]}, \\ \text{and } \mathbf{H}_{\mathbf{X}} &= \mathbf{I}_n - \mathbf{X} (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t. \end{split}$$

Context o	Model	Simulation exercise	Results	Application with real data	Conclusions
Simula	tion				

 X_1 , X_2 and X_3 covariates were simulated from a Uniform(0,10) distribution.

$$egin{aligned} E_{ij} &\sim \textit{N}(\phi_{\textit{Eij}},1) \ C_{ij} &\sim \textit{N} ~ or ~ \textit{Gamma}(\phi_{\textit{Cij}},1) \end{aligned}$$

Bivariate normal distribution with $\rho = 0.5$ or FGM copula for Normal-Gamma simulation.

Treatment 1:

$$\phi_{E_{i1}} = 1 + 0.7X_{1i} + 0.2X_{2i}$$
$$\phi_{C_{i1}} = 5 + 1X_{1i} + 0.3X_{2i}$$

Treatment 2:

$$\phi_{E_{i2}} = 2 + 0.7X_{1i} + 0.1X_{2i}$$
$$\phi_{C_{i2}} = 8 + 2X_{1i} + 0.2X_{2i}$$

Context o	Model	Simulation exercise	Results	Application with real data	Conclusions
Simula	tion				

$$E_{ij} \sim N(\phi_{Eij}, 1)$$

 $log - C_{ij} \sim N(\phi_{Cij}, 0.1)$

Bivariate normal distribution with $\rho = 0.5$

Treatment 1:

$$\phi_{C_{i1}} = 1.74235 + 0.1X_{1i} + 0.03X_{2i}$$

Treatment 2:

$$\phi_{C_{i2}} = 1.79444 + 0.2X_{1i} + 0.02X_{2i}$$

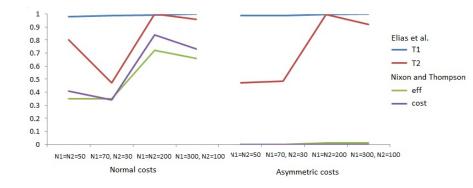
Context o	Model	Simulation exercise	Results	Application with real data	Conclusions
Simulati	on				

Different frameworks for different sample–sizes were considered. We carry out 1.000 simulations and we define as an optimal selection when:

- Objective variable selection: The model with the highest posterior probability is intercept, X1 and X2. The selecction is carry out for the Treatment 1 and 2.
- Nixon and Thompson model: Only the variable X2 is detected as a subgroup for effectiveness and X1 and X2 are detected as subgroups for the cost model.

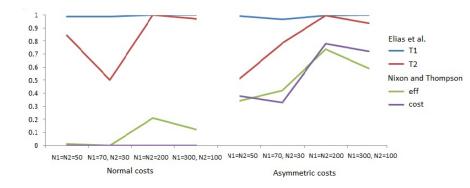
Simulations were carried out with Mathematika and WinBUGS using the R2WinBUGS package.

Results: Normal data

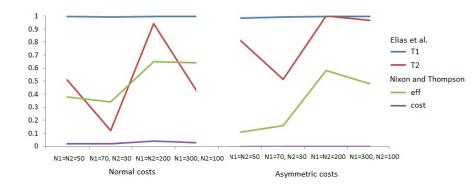


Context o	Model	Simulation exercise	Results	Application with real data	Conclusions

Results: Gamma data



Results: Log-normal data



- Data from a randomized clinical trial (Hérnandez et al., 2003) that compares two alternative treatments for exacerbated chronic obstructive pulmonary disease (COPD): home hospitalization or conventional
- Effectiveness: Difference between the score at the beginning and at the end of the study of the St. George's Respiratory Questionnaire (SGRQ).
- Potential covariates: Age, sex, smoking habit, forced expiratory volume in one second (FEV), exacerbations requiring in-hospital admission (HOSV) and the score at he beginning of the study (SGRQ1).

Context	Model	Simulation exercise	Results	Application with real data	Conclusions

Example with real data: Variable Selection

Treatment 1

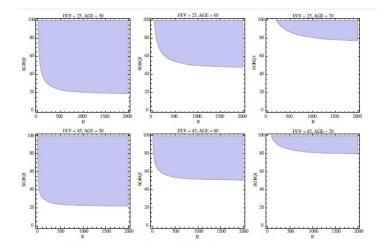
SGRQ1, Age, FEV

Treatment 2

SGRQ1, FEV

Context	Model	Simulation exercise	Results	Application with real data	Conclusions

Example with real data: Posterior analysis



Context o	Model	Simulation exercise	Results	Application with real data	Conclusions
Conclu	sions				

- Cost-effectiveness analysis based on regression methods facilitates the analysis of subgroups with the inclusion of interactions terms in the model.
- The identification of subgroups is reduced to an hypothesis test about the relevance of these parameters.
- Bayesian Variable Selection is proposed as a natural way for the identification of subgroups.
- Simulation study shows the preference for the Bayesian Variable Selection.
- Bayesian Variable Selection obtains good results even with small sample sizes.
- Bayesian Variable Selection is less sensitive to the distribution assumption.