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Many good reasons for using Bayesian methods in
drug development

Good decision making should be based on all relevant
Information

- Therefore, formally accounting for contextual information makes
sense

 However, this is easier said than done

Bayesian metrics can add value (e.g posterior probability,
predictive probability)

Bayesian approach is “easier” in complex settings with
various sources of uncertainty.
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Bayesian methods applied at Novartis
A long history of using Bayesian methods

Appl. Statist. (1986),
35, No. 2, pp. 93-150

Bayesian Methods in Practice:
Experiences in the Pharmaceutical Industry

By A. RACINE, A. P. GRIEVE and H. FLUHLER
CIBA-GEIGY AG, Basle, Swilzerland

A F. M. SMITHY
The University of Nottingham, UK

[Read before the Royal Statistical Society, at & meefing organized by the Research Section an
Wednesday, March hth, 1986, The President, Dr, J. A, Nelder, in the Char]

SUMMARY

Four typical applications of Bayesian methods in pharmaceutical research are outlined. The implica-
tions of the use of such methods are discussed, and comparisons with traditional methodologies are
given,

Keywords: Bayesian Analysis; Acute Toxicity, Probit Modgl, Prior Information; Clinical Trials; Two-
Period Crossover Design; Cayover-Effect; Bayes factor; Bioequivalence Assessment; Histoncal
Information; Two-Stage Procedure; Pharmacokinetics, Population Modelling; Hierarchical Model,
EM Algorithm; Prediction
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Using historical data from
previous studies to form
priors

Bayesian Adaptive designs
In phase | Oncology

Quantitative Decision
making techniques

Evidence synthesis

Exploratory sub-group
analysis

Sensitivity analysis plans for

handling missing data
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Still many challenges moving Bayes into practice

Some colleagues have limited formal education in
Bayesian methods (varies considerably across different
sites)

Even colleagues with a good background in Bayesian
statistics find it difficult to connect with practice

Bayesian methods usually require a much greater level of
engagement and resource

Skepticism on whether Bayesian approaches really add
value
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DIA Bayesian Scientific Working Group

Group of representatives from Regulatory, Academia, and
Industry, engaging in scientific discussion/collaboration

— facilitate appropriate use of the
Bayesian approach

— contribute to progress of Bayesian
methodology throughout medical
product development
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Vision

Ensure that Bayesian methods are

well-understood, accepted, and broadly utilized for
design, analysis, and interpretation to improve patient
outcomes

throughout the medical product development process and to
Improve decision making.
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Bayesian approac

Part 1 Motivating examples

subgroup analysis,
selection problems and signal
detection

hes to subgroup analysis and selection problems



Challenges with exploratory subgroup analysis
random high bias - Fleming 2010

Effects of 5-Fluorouracil Plus Levamisole on Patient
Survival Presented Overall and Within Subgroups, by Sex and Age*

Hazard Ratio Risk of Mortality

Analysis North Central Intergroup
Group Treatment tud
Group Study # 0035
(n =162) (n =619)

All patients 0.72 0.67

Female

Male

Young 0.60 0.77

Old 0.87 0.59
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Assessing treatment effect heterogeneity in multi-regional
clinical trials

Multiregional trials popularized by the need to enroll a
large number of patients in a timely manner

Interest in the consistency of treatment effects across
regions (ICH E5, PMDA guidelines)

Example - Large cardiovascular outcomes trial known as
‘PLATO’, where substantial evidence of regional
heterogeneity emerged during the analysis
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PLATO trial example

Randomized double-blind study comparing ticagrelor
(N=9333) to clopidogrel (N=9291), both given In
combination with aspirin, in patients with acute coronary
syndromes.

Primary endpoint was time to first occurrence of CV death,
MI or stroke.

Randomization across 41 countries.

Primary endpoint met for ticagrelor 9.8% vs 11.7% events
HR =0-84 95% CI 0-77-0-92]; p=0-0003.
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Part of the pre-specified subgroup analysis
Extracted from the FDA advisory committee material

Figure 6 Funnel Plot
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Figoure 13

Hazard ratdos and rates of the primary clinical endpoint by patiemt
subgroups (PLATCO - full analysis set)
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Possible explanations given in the AZ briefing material

Errors in study conduct
* Ruled out

Chance

- probability of observing a result that numerically favors clopidogrel in at
least 1 region is 28% and the probability of observing a result numerically
favoring clopidogrel in the NA region while numerically favoring ticagrelor
in the other 3 regions is 10%.

- FDA: chance cannot be ruled out but interaction with US/non-US is both
striking and worrying

Imbalances between US and non-US populations in
patient characteristics, prognosis, or clinical management
resulting in differential outcomes.
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Aspirin dose a possible explanation
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Extracted from the AZ core slides used at the 2010 Advisory committee
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Advisory committee vote and FDA decision memo

The Ticagrelor NDA was presented to the Cardio-Renal
Advisory committee. By a 7 to 1 vote they recommended
approval

“Although | consider the likelihood that the US/OUS was
chance, a credible basis for approval for ticagrelor, |
believe the evidence that aspirin dose explains the
difference is a powerful further basis for approval...”

“Labeling will note in several places, including Boxed
Warning, that ticagrelor has been studied in combination
with aspirin and doses above 100 mg appear to decrease
effectiveness”
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Some additional notes from Carroll and Fleming (2013)

Trials are seldom powered to address pre-specified
hypotheses about regional interactions.

Such interactions usually are assessed in an exploratory
manner, often with many other supportive analyses.

As such, the first step in examining an apparent regional
Interaction is to assess the likelihood it is due to chance.
This might include:

- A Galbraith plot for effects within regions, and again for effects within
country if possible.

- Bayesian subset analyses and shrinkage estimators of regional effects

- Lastly, replication of an observed regional interaction in a second,
independent trial should be sought where possible.
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Classical group sequential design

A framework that allows k chances to stop for success with
type one error control

More formally, we have to find critical values z,, z,, . . ., z,
as a solution of the integral:

P(Z,<z,,2,<2z,,...,2,<z./|H;)=0.975

with the correlation structure of the MVN distribution
determined by the amounts of data available at the
analyses

Group sequential methodology essentially boils down to
Imposing enough structure or constraints to determine
solutions.
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Example: superiority boundaries — 4 looks

O’Brien-Fleming

Critical values

d:0;25 in Wang-Tsiatis family

1st 2nd 3rd Final
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Over-estimation in group sequential designs

Overestimation in GSDs

“...a trial terminated early for benefit will tend to
overestimate true effect; this happens because there always
IS variability in estimation of true effect, and when assessing
data over time, evidence of extreme benefit is more likely
obtained at times when the data provide a random
overestimate of truth.”

Ellenberg, DeMets, and Fleming JAMA, 2010
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O’Brien-Fleming rule on the treatment effect scale

Sd=2.17 n=100 per group

Decision criteria translated to bounds
for the observed treatment effect
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Bayesian group sequential designs

When presenting a final treatment effect prior information
could be utilized to shrink towards the hypothesized
treatment effect (see Pocock and Hughes; 1990)

Spiegelhalter et al. (2004) showed a more traditional
sceptical prior centered at the null or O treatment effect
can also be used

* For four equally spaced IA a sceptical prior with 0.25 of the total
sample size could be used leading to type one error control with a
Bayesian decision rule and automatic shrinkage

* i.e. If the Bayesian decision rule Pr(d > 0|Data) > 0.975 then the
probability of achieving this under the null is 0.025.
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R package available for design investigation

Package ‘gsbDesign’

May 8, 2012
Tyvpe Package
Title Group Sequential Bayes Design
Version 0.95
Date 2012-05-07
Author Florian Gerber, Thomas Gsponer
Depends gsDesign, lattice, grid
Maintainer <flora. fauna.gerber@gmail. com>

Description Group Sequential Operating Characteristics for Clinical, Bayesian two-
arm Trials with known Sigma and Normal Endpoints.
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Safety signals

Rofecoxib (Vioxx, Merck)

- was withdrawn in 2004 due to increased risk of
cardiovascular disease in patients taking drug for
more than 18 months

« Juni et al. (2004) claimed drug should have been
withdrawn several years earlier
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Rofecoxib (Vioxx)

Following the APPROVe study (Bresalier et al,

NEJM, 2005) Rofecoxib was withdrawn in 2004
due to increased risk of cardiovascular disease
In patients taking drug for more than 18 months

Juni et al. (2004) conducted a retrospective
cumulative meta-analysis and used the results
to argue the compound should have been
withdrawn several years earlier

25 Bayesian approaches to subgroup analysis and selection problems U NOVARTIS



A Retrospective Cumulative meta-analysis
Rofecoxib (Vioxx) example

Relative risk (95% C1) of myocardial infarction
Year Patients Events P T:{blf.‘ 1
Sequence of Studies and Comparator Usage m Juni ef al. Figure 3
197 53 1 0916 4 o
1998 615 2 0736 < 'Y __ __
e ¢ 029 Placebo 1997
8 ° vk ¢ 020 extension Diclofenac 1998
2983 8 0649 @ 035 Diclofanac 1998
34 9 0866 040 Placeho, lbuprofen 1998
1999 4017 i 0879 045 Placeho, lbuprofen 1998
5059 3 0881 058 Placeho, Nabumetone 1998
200 - % 0855 034 Diclofenac 1995
- 40 - | 085 Placeho, Nabumetone 19499
’ 063 ext Maproxen 2000
o “ o —— 088, 089 (VIGOR) Naproxen 2000
B8 # = —— 020 Placeho, Nabumetone 2000
0740 52 0010 — 096 Placebo, Naproxen 2000
2001 0742 58 0007 S — 102 (ADVAMNTAGE) Naproxen 2000
078 5] 0007 o 096 ext Naproxen 2001
11 , o 097 ext Naproxen 2001
’ * w [ | 120, 121 Flacebo 2001
. Favours rofecoxib ' Favours control 0

') NOVARTIS
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Discussion on the analysis of Juni et al

A careful look at the plot reveals that the large VIGOR
study, designed to look at Gastro-intestinal side effects, Is
the most influential study in the cumulative meta-analysis

In the VIGOR study Naproxen was the control treatment

At the time it was argued that the imbalance In
cardiovascular safety was due to the cardio-protective
effect of Naproxen

27 Bayesian approaches to subgroup analysis and selection problems U NOVARTIS



Response to Juni et al

Kim and Reicin (2005) responded to Juni et al. (2004)

“The analysis by Peter Juni and colleagues contravenes the
pasic principle of meta-analyses to combine like with like,
and thus arrives at flawed conclusions. “

The concern relates to conducting a meta-analysis
comparing Rofecoxhib to any control treatment rather than
separate analyses for each control treatment
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Discussion of Juni et al example cumulative meta-
analysis

Is a basic principle of meta-analysis to combine like with like?
It depends on the question you wish to answer

ICH E9 suggests

“The results from trials which use a common comparator (placebo or
specific active comparator) should be combined and presented
separately for each comparator providing sufficient data”

So according to ICH E9 both questions are of interest and could be
examined through meta-analysis

An alternative approach would be to use network meta-analysis, which
will be discussed later in the context of Non-steroidal anti inflammatory

drugs (NSAIDs) such as rofecoxhib
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Estimation or Testing?

IS our primary purpose is to more formally detect unusual
subgroups/ safety signals or is it to provide a better
summary of the data and understand treatment effect

heterogeneity?

The guestion can be thought of as deciding between an
estimation approach or a testing approach
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Bayesian approaches to testing (1)

Full Bayesian modeling

 Essentially some kind of mixture model where a null distribution is
iIncluded and an alternative distribution for subgroups or safety
effects that are unusual

- Calculate the posterior probability that each subgroup belongs to the
alternative

 Such posterior probabilities have the advantage that they
automatically incorporate adjustments for multiple comparisons (as
long as the hyper-priors are placed on the probabilities of belonging
to each component of the mixture)

Challenge Bayarri and Morales (2003) stated that

‘From a Bayesian point of view, testing whether an observation is an outlier is usually
reduced to a testing problem concerning a parameter of a contaminating distribution.
This requires elicitation of both (i) the contaminating distribution that generates the
outlier and (ii) prior distributions on its parameters. However, very little information is
+2 stypically.available about.how.the possible outlier could have been generated.ovarTis



Bayesian testing (1) — some literature

Berry and Berry (2004) — in the context of safety signal
detection

- Utilized shrinkage techniques and hierarchical modeling to borrow
strength within and between

» Mixture modeling to identify signals

Sivaganesan S, Laud PW, and Mdller P. (2011)

» Subgroup analysis of clinical trial data using a zero-enriched Polya
Urn

These types of models can be quite sensitive to prior
specifications so typical need simulations with frequentist
operating characteristics to work out likely properties
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Bayesian approaches to testing (2)

Pragmatic Bayesian approach based on using model
diagnostics

Set-up a model that characterizes null behavior utilize
Bayesian model diagnostics, typically leading to
frequentist p-values to assess for outliers/ signals

Examples - Bayarri, M. J. and Castellanos, M. E. (2007)
Marshall and Spiegelhlater (2007)

Still have the problem of dealing with multiple p-values
and dependence. Could apply Bayesian FDR type
methods in a second stage of analysis

34 Bayesian approaches to subgroup analysis and selection problems U NOVARTIS



Utilizing Bayesian estimation technigues

Some examples

 Using Bayesian hierarchical modeling, appropriate exchangeability
and shrinkage to help account for reproducibility

- Using Bayesian evidence synthesis techniques
* Using prior structure to introduce skepticism

Challenges

* While these techniques can potentially help account for
reproducibility they don’t typically tackle multiplicity (at least directly)

- Many possible modeling structures so how can we make sure we
base conclusions on a useful model
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Bayesian estimation — some literature

Using priors
* Pocock and Hughes (1990) - Group sequential designs
- Simon (2002) - Bayesian subset analysis

Hierarchical modeling

* Dumouchel (2012) — safety example that is similar to Berry and
Berry (2004) but no mixture modeling part

* We will look at Jones et al (2011) — Exploratory subgroup analysis

Evidence synthesis — many papers

* We will look at Ohlssen et al (2013) — Network meta-analysis in the
context of drug safety
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Subgroup analysis

37 Bayesian approaches to subgroup analysis and selection problems



Acknowledgements

Hayley Jones, Beat Neuenschwander, Amy Racine, Mike
Branson

Main reference

Jones, Ohlssen, Neuenschwander, Racine, Branson (2011).
Bayesian models for subgroup analysis in clinical trials.
Clinical Trials 8 129 -143

38 Bayesian approaches to subgroup analysis and selection problems U NOVARTIS



Outline

Introduction to subgroup analysis and Bayesian methods
Shrinkage

Models

Case Study

Concluding Remarks
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Introduction to Subgroup analysis

For biological reasons treatments may be more effective in
some populations of patients than others

* Risk factors
» Genetic factors
- Demographic factors

This motivates interest in statistical methods that can
explore and identify potential subgroups of interest

40 Bayesian approaches to subgroup analysis and selection problems



Introduction
Various Aspects

(Focus of this talk in bold)

Definition of subgroups
* Prospective vs. retrospective definition
- “small” vs. very large number of subgroups

(a few important factors that are considered predictive
vS. data-mining)

Safety vs. efficacy

Testing (default “decision-making”) vs. estimation
(inference)

One trial vs. multiple trials
Freguentist vs. Bayesian
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The Bayesian modeling strategy used here

Priors are carefully selected that we hope are dominated by the
data

Models fitted using Markov chain Monte Carlo (MCMC)
estimation

A variety of modeling structures examined

* Model support measured using the deviance information criteria (DIC) Model
diagnostics with frequentist properties used to help show whether a model
has good calibration

« Examine if similar conclusions are reached from well supported models to
check inference robustness

This work follows the ideas of Box (1980), who advocated the
use of an iterative cycle of model criticism and estimation
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Example 1
Data from one study

Subgroups by ECG, LDL-C, baseline risk
(stratified analyses)

+HIGH HIGH
+HIGH low
+ low HIGH
+ low lowy
- HIGH HIGH
_i_E—
- HIGH low
—E— i
- low HIGH
ol
- lowy Towe
+
| T | i T T
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T better than C
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Davis & Leffingwell, Contr Clin

Trials 1990)
Endpoint

» Coronary Heart Disease
(CHD) death and Myocardial
Infarction

Comparison
* diet + placebo (C)
- diet + cholestyramine (T)

Subgroups defined by baseline
characteristics

* ECG (positive/negative)
» LDL cholesterol (high/low)

* Risk score (including systolic
blood pressure, age, smoking)



Example 2 (case study)

Data from several studies
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Study 4
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» Subgroup analysis in a
meta-analytic context

- Efficacy comparison T
vs. C

« Data from 7 studies

* 8 subgroups

 defined by 3 binary base-
line covariates A, B, C

« A, B, C high (+) or low (-)
» describing burden of
disease (BOD)

- ldea: patients with
higher BOD at baseline
show better efficacy



Approaches

Testing / Estimation

Testing
* typical for pre-planned analysis, pre-specified subgroups

(Model-based) estimation
* retrospective analyses

45 Bayesian approaches to subgroup analysis and selection problems



Testing Approaches

Subgroup analysis formulated as a testing problem
- Standard approach

- test for treatment by subgroup interaction
- If significant: proceed to estimate within subgroup effects

- Pocock et al. (StatMed 2002), Assman et al. (Lancet 2000), Brookes et al.
(J of Clin Epi 2004)

* What’s often done

- Fully stratified analysis: estimates for treatment effects in each subgroup
without any reference to the data in other subgroups

- This is problematic. Berry (Biometrics 1990), Grouin et al. (JBS 2005)
- Recommendations

- Careful pre-planning of subgroup analysis

- Post-hoc analyses should address the random high bias problem
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Estimation Approaches

Various approaches to estimate subgroup effects

Instead of looking at subgroups in a fully stratified way, it is
assumed that information from other subgroups carries
Information about subgroup(s) of interest

Subgroup effects 6,, 6,,..., 65 are related/similar to a
certain degree.

Requirement: a reasonable assumption/model
Under such assumptions

* results will be different from fully stratified analysis

* due to borrowing from the other subgroups

- — modified point estimates

- — generally shorter confidence intervals
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Assumptions to deal with extremes
Jones et al (2011)

1) Full stratification 04,..cenn, O
—Assumes a different treatment effect in each
subgroup
2) Equal Parameters 0,=...= 05

— Assumes the same treatment effect in each
subgroup

3)Compromise.
Effects are similar/related to a certain degree
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Shrinkage estimation
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Shrinkage

Y, Y, Y Y1, Ys
Data from G subgroups

0,,..., O

effects
)

Unknown ‘Relationship/Similarity’

Range of possibilities:

= from same effects

= ... to very different effects
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Shrinkage

The simplest model

G subgroups with effects 4,, 6,,..., 65

Why shrinkage?

- Estimates are typically more spread out than true effects 6,, é,,..., 65
» Extreme stratified subgroups estimates are typically too extreme

Simple shrinkage for subgroup analyses
° Yy~ N(6, ,sgz), g=1,...,.G
¢ 01, 92,..., QG - N(u, 0)2)

» See Louis (JASA 1984), Davies & Leffingwell (Contr Clin Trials 1990),
both using empirical Bayes technigues

Inference

» Classical random-effects analyses

- Empirical Bayes

* Fully Bayesian (with priors for g and 7)
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Fitting a standard shrinkage model when o Is
unknown

Even inference for the simple shrinkage models inference
IS challenging when @ Is unknown

Classical ways to address this
* Method of moments or Mixed models framework (REML, ML GLMM)
* Requires empirical Bayes to get at the subgroup effects

« Difficult to account for the uncertainty surrounding @

Bayesian approach can be applied using MCMC estimation

« Can be sensitive to choice of prior particularly for @

« Automatically propagates uncertainty surrounding @
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Shrinkage
Example 1 (Davis & Leffingwell 1990)

CHD deaths and myocardial infarction by subgroup and treatment group

ECG LDL.C risk rC nC rT nT rC pT 1ogOR 1ogOR.se
1 + HIGH HIGH 7 23 5 26 30.4% 19.2% -0.608 0.673
2 + HIGH low 6 32 4 38 18.8% 10.5% -0.674 0.696
3 + low HIGH 3 19 1 21 15.8% 4.8% -1.322 1.202
4 + low low 3 30 5 34 10% 14.7% 0.439 0.778
5 - HIGH HIGH 30 265 38 266 11.3% 14.3% 0.267 0.261
6 - HIGH 1low 73 665 46 664 11% 6.9% -0.505 0.197
7 - low HIGH 25 268 21 260 9.3% 8.1% -0.158 0.310
8 - low 1low 40 598 35 597 6.7% 5.9% -0.141 0.239

logOR = log( rT/(nT-rT) ) — log( rC/(nC-rC) )
logOR.se = (1/rT + 1/(nT-rT) + 1/rC + 1/(nC-rC) )12
From Davis & Leffingwell (Contr Clinical Trials, 1990)

Note: in the paper a relative risk (using logrank statistic) was used instead
of the odds-ratio!

53 Bayesian approaches to subgroup analysis and selection problems



Simple Shrinkage

Example 1 (Davis & Leffingwell 1990): simple shrinkage estimates

Subgroups by ECG, LDL-C, baseline risk
(stratified analyses) Subgroups by ECG, LDL-C, baseline risk

(stratified analyses and shrinkage estimates)

+HIGH HIGH -
+HIGH HIGH -

h ——————————— e e
+ HIGH low
= ; + HIGH low —_—
o e e b
+ i i
o HIGH ! ; + low HIGH _———
it L Rk eE Ll
+ low low g + lowe lowy _._
e et s -
- HIGH HIGH |
B - HIGH HIGH —_—
- HIGH low - HIGH law ——
- low HIGH - lows HIGH —
—e— s bo——-
- lowy o - o low S
—a— -——-B-4---
| | I | I | | | | | T T
-3 -2 -1 0 1 2 -3 -2 -1 0 1 2
logOR logOR:
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Bayesian approac

Alternative subgroup models

And extensions to meta-analysis

hes to subgroup analysis and selection problems



A recap of the subgroup models introduced so far

1) Full stratification 04,..cenn, O
—Assumes a different treatment effect in each
subgroup
2) Equal Parameters 0,=...= 05

— Assumes the same treatment effect in each
subgroup

3) Simple shrinkage estimation @, 6,,..., 65 ~ N(1, @ ?)

= Assumes exchangeability among the subgroup
effects
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Issues with simple shrinkage assumption

Exchangeability for subgroup effects may be questionable

* In particular if subgroups are defined by covariates that are thought
to be predictive of the effects

Therefore, Iin this section we look at some alternative

approaches to shrinkage that might address this problem in
certain circumstances

Based on the subsequent case-study we will look at the
case of 3 binary covariates A,B,C, defining 8 subgroups
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General first order interaction model with 3 binary
covariates

Effect for subgroup g
0, =+ y, I (A=high) + y,1 (B = high) + ;1 (C = high)

- 1 fixed baseline (all covariates = 0)
- v first-order interactions

If y's are separate fixed effects we would have a completely
standard simple regression model with first order
Interactions
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Simple regression and simple shrinkage

It is possible to combine simple regression with a simple
shrinkage model

However, the interpretation is a bit strange

The subgroup effects are exchangeable after accounting
for a first order interaction

0, =7+l (A=high) +,1(B = high) + »;1 (C = high) + ¢,

@5 ~ Normal(0, @) with prior on @
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The Dixon-Simon Model
shrinkage on the regression model parameters

Here we start with the simple regression model

6, =7+ 7,1 (A=high) + 7,1 (B = high) + 7,1 (C = high)

» 1 fixed baseline treatment effect

Shrinkage is then applied to the regression model
coefficients:

71, ¥ 72 ~ Normal(0,»?) with prior on @

This is similar to penalized regression techniques
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Example 1
Simple shrinkage and Dixon-Simon model

Subgroups by ECG, LDL-C, baseline risk
(simple shrinkage (blue) and Dixon-Simon (red))

+ HIGH HIGH —_———
+ HIGH lowy _—

+ low HIGH P —

+ low |owe —_—
- HIGH HIGH ——
- HIGH low —_—

- low HIGH —_—

- o low —_—
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Higher order interaction model for 3 binary
covariates

Effect for subgroup g

6, =7+ 7,1 (A=high) + 7,1 (B = high) + 7,1 (C = high)
+8,1(A=B = high) + 8,1 (A=C = high) + 6,1 (B = C = high)
+al (A=B=C = high)

- 1 fixed baseline (all covariates = 0)
- v first-order interactions

* & second-order interaction

- o third-order interaction

Note: the full model without any structure on parameters
corresponds to a fully stratified analysis (just a
»reparameterizationl). o



Extended Dixon and Simon model with higher order
Interactions

Effect for subgroup g

6, =+ 7,1 (A= high)+ 7,1 (B = high) + 7,1 (C = high)
+8,1(A=B =high) + 3,1 (A=C = high) + 8,1 (B = C = high)
+al(A=B =C = high)

- 7 fixed baseline

71 %2, 73 ~ Normal(0, &%)
o1, 0, 03 ~ Normal(0, w,?)
a ~ Normal(0, @;?)

with priors on w,, ®,, @,
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Meta-analysis: extensions to multiple studies

Effect for subgroup g in study s

6,, = 7+ 7,1 (A=high)+7,1 (B = high) + 7,1 (C = high) + A,

Equal Parameters A ;=...= Ag

* Fixed or common effect meta-analysis assumption

Exchangeability estimation A, ~ Normal(0,¢?), s=1,...,S

« Random effects meta-analysis assumption

Applicable with all subgroup models
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Recap on subgroup models

ldentical subgroup effects
Fully stratified analysis

Regression structure with first order subgroup interactions, no
random effects (regression model)

Simple shrinkage (full exchangeability)

Regression structure + additonal random effects (partial
exchangeability model)

Dixon-Simon (first order interactions with shrinkage placed on the
coefficients)

Extended Dixon-Simon (shrinkage placed on coefficients associated
with first and higher order interactions )
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Full set of models

I g g = =1,..., 8
(1) No subgroup effect g ™ g9 . .
T ~ Normal (0, 10%)
39 = T+TII{1’3[—|—} +A."-2-{{I32+} +'}'3I{133+}

1+ Ba+y + B2l B+ Byt

+03l ey masy + Ol B+ Bay B2ty
(2) Fully stratified T ~ Normal (0, 10°)

e ~ Normal (0, 109y, k2 =1,2,3
8p ~ Normal (0,10, k& =1.2,3
fat ~ Normal (0, 105)

8y = 7T+nle+y+ 72 B+ T Yalgs+)
(3) Simple regression T ~  Normal (0, 108)

i ~ Normal (0,10%), k& =1,2.3

[ = T4+ 1y, g=1.....8

T ~ Normal (0, 106]

4) Simple shrinka
{4) mple shrinkage Wy ~ Normal {0._;..'2]

w ~  Half-normal (1)

By = T4+l +y+r2dip+y + val{py4y + e
T ~ Normal (0, 10%)

~# ~ Normal(0,10%), E=1.,2.3

g ~ Normal (0,w?), g=1.....8

I ~  Half-normal (1)

(5) Simple regression and shrinkage

Gy = T+ 7dipiry T2 diBayy 13l B4y
T ~ Normal (0, 105y

. o~ WNormal (0,w?), k=1,2,3

w  ~ Half-normal (1)

(6) Dixon and Simon

Gy = T4+ 1dip, ey vl By Hral B4y
+01d s mayy 020 (Ba Bayy

+830 1+ Basy + ol B+ Bot Bat)
T ~ Normal (0, 105)

e ~ Normal (0,wf). k£=1.2.3
§p o~ Normal (0,w3). kE=1,2.3
a  ~ Normal (0, w3)

w; ~ Halffnormal(1l), =1,2.3

(7) Extended Dixon and Simon
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Case Study
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Case study

Results

Separate analyses for two trials
* “small” trial 1
* “large” trial 4

Meta-analytic subgroup analyses: all seven trials

Results for two models are shown
 Dixon-Simon: exchangeable 1st order terms

- extended Dixon-Simon: exchangeable 1st and higher order
interaction terms
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Case Study
... Data for small and large study (study 1 and study 4)

Fully stratified Fully stratified
Study 1 Study 4
Rl B ——————— - - ———————ﬂ;E————;r——-
———————————— N S R S
T oo A
------------ oo 5= R
ot +-+ I
———————————————— L2 e L ————————G‘-—————i—
++ -+ +
_______________________ R il ittt ____,_____.i.E,_________
++ + 5 5 ++ + |
L e S ¥ —
I I [ I [ I [
4 2 1] 2 4 2 0
logOR logOR
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Case Study

Two subgroup analyses for Study 1
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Fully stratified Dixon-Simon
y Extended Dixon-Simon

Study 1 Study 1
R é““ﬂi‘ ___________ -+- _E,_
+ + ___é-____% ________ + + +
[ [ I I ] [ [ | :

2 ] 2 4 -4 2 0
loQioR loqOR



+++

Case Study

Two subgroup analyses for Study 4

Fully stratified

Study 4

+++

Dixon-Simon

Extended Dixon-Simon
Study 4

logOR
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Case Study

Two meta-analytic subgroup analyses

Study 1 Study 2 Study 3 Study 4
== e e e Two models
g e e e  Dixon-Simon + study
I e e effects (red)
R e R e vt = = - Extended Dixon-Simon
o e S T + study effects (blue)
n.ln D.IS 1_In 1_|5 n_ln n_ls 1_Ic| 1.I5 EI.IIZI n.ls 1_|n 1_I5 o0 05 10 15 ° Both Wlth Slmllar
locy O logoR: g OR: logOR deVIance Informatlon
" " " criterion (DIC)
S B S B S B o - Model diagnostics
N T N reasonably good
0o L e - Qualitatively similar
: —_Eﬁ ﬂ: : t
e R g results
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A recap on the modeling strategy

Priors are carefully selected that we hope are dominated by
the data

A variety of modeling structures examined

* Model support measured using the deviance information criteria (DIC)
Model diagnostics with frequentist properties used to help show
whether a model has good calibration

- Examine if similar conclusions are reached from well supported
models to check inference robustness

This work builds upon the work of Box (1980), who
advocated the use of an iterative cycle of model criticism
and estimation
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Sensitivity analyses across a range of structures

Using DIC for model comparison
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- Simple shrinkage 195 20,8 136 11.9 153 18.6 21.5 93.7
. - . Regression -+ shrinkage | 24.3 234 17.0 10.8 20.0 21.6 25.8 96.9
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— -
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Concluding Remarks
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Concluding Remarks

Post-hoc subgroup analyses with a small number of
subgroups defined by clinically important baseline factors

Testing approaches have clear limitations due to small
sample sizes and multiplicity problems

Inferential/estimation approaches based on shrinkage
iIdeas are more promising

Required: a “model” for the similarity of subgroup effects
« Simple shrinkage model
 Dixon-Simon model or extended version(s)

Examples: different shrinkage models lead to similar
answers
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Part 4 safety network meta-analysis
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Introduction to Bayesian Network Meta-Analysis
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Bayesian Network Meta-Analysis

Systematic reviews are considered standard
practice to inform evidence-based decision-
making regarding efficacy and safety

Bayesian network meta-analysis (mixed
treatment comparisons) have been presented
as an extension of traditional MA by including
multiple different pairwise comparisons across
a range of different interventions

Several Guidances/Technical Documents
recently published
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Example References

ISPOR: Interpreting Indirect Treatment Comparisons and
Network Meta-Analysis for Health Care Decision-making

ISPOR: Conducting Indirect Treatment Comparisons and
Network Meta-Analysis for Health Care Decision-making

NICE DSU Technical Support Documents

Canadian Agency for Drugs and Technologies in Health
Report

Spiegelhalter, Abrams, Myles. Bayesian Approaches to
Clinical Trials and Health-Care Evaluation. Wiley 2003
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http://www.ispor.org/workpaper/interpreting-indirect-treatment-comparison-and-network-meta-analysis-studies-for-decision-making.pdf
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Basic Framework

Additional Future
Studies study
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Of Interest AC:A vs AC: C P

-
~
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——————
___________
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Poisson network meta-analysis model
Based on the work of Lu and Ades (2006 & 2009)

r, —Poisson(A, E;) J=1...M;k=1,...,K
log(1;,) = £
log(A ) = + O, K=D

i is the effect of the baseline treatment b in trial j and djbk Is the trial-
specific treatment effect of treatment k relative to treatment to b (the
baseline treatment associated with trial ))

Note baseline treatments can vary from trial to trial

Different choices for 4's and o6’s. They can be: common (over studies),
fixed (unconstrained), or “random”

Consistency assumptions required among the treatment effects

Prior distributions required to complete the model specification
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Network meta-analysis
Trelle et al (2011) - Cardiovascular safety of non-steroidal anti-inflammatory

drugs:

Lumiracoxib

Placebo

Rofecoxib

3

2%\3 Naproxen
2
1
5 Ibuprofen
] 1

Diclofenac

Etoricoxib *

\2;4

Celecoxib

Primary Endpoint was myocardial
infarction

Data synthesis 31 trials in 116 429
patients with more than 115 000
patient years of follow-up were
included.

A Network random effects meta-
analysis were used in the analysis

Critical aspect — the assumptions
regarding the consistency of
evidence across the network

How reasonable is it to rank and
compare treatments with this
technique?

Trelle, Reichenbach, Wandel, Hildebrand, Tschannen, Villiger, Egger, and Juni. Cardiovascular safety of non-steroidal anti-inflammatory drugs
network meta-analysis. BMJ 2011; 342: c7086. Doi: 10.1136/bmj.c7086



Results from Trelle et al
Myocardial infarction analysis

Relative risk with 95% confidence interval compared to placebo

Treatment RR estimate lower limit  upper limit

Celecoxib 1.35 0.71 2.72
Diclofenac 0.82 0.29 2.20
Etoricoxib 0.75 0.23 2.39
Ibuprofen 1.61 0.50 5.77
Lumiracoxib 2.00 0.71 6.21
Naproxen 0.82 0.37 1.67
Rofecoxib 2.12 1.26 3.56

Authors' conclusion:

Although uncertainty remains, little evidence exists to
suggest that any of the investigated drugs are safe Iin
cardiovascular terms. Naproxen seemed least harmful.
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Comments on Trelle et al

Drug doses could not be considered (data not available).

Average duration of exposure was different for different
trials.

Therefore, ranking of treatments relies on the strong
assumption that the risk ratio is constant across time for all

treatments

The authors conducted extensive sensitivity analysis and
the results appeared to be robust
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Two way layout via MAR assumption

An alternative way to parameterize proposed by Jones et al (2011) and Piephoetal et
al (2012) uses a classical two-way linear predictor with main effects for treatment and
trial.

Both papers focus on using the two-way model in the classical framework. By using
the MAR property a general approach to implementation in the Bayesian framework
can be formed

All studies can in principle contain every arm, but in practice many arms will be
missing. As the network meta-analysis model implicitly assume MAR (Lu and Ades;
2009) a common (though possibly missing) baseline treatment can be assumed for
every study (Hong and Carlin; 2012)

logit (pix) = s; + tr + Vi

L p p
ti = 0 , | Pl p
vi = 0i=1,...,N 2=0 :

PP L

(Vin. ..., Vi) ~MVN(0,X)



Comments on implementation and practical
advantages

In WInBUGS include every treatment in every trial with missing
outcome cells for missing treatments

Utilize a set of conditional univariate normal distributions to form the
multivariate normal (this speeds up convergence)

The parameterization has several advantages when forming priors:

* In the Lu and Ades model, default “non-informative” priors must be
used as the trial baseline parameters are nuisance parameters with
no interpretation

* In the two-way model an informative prior for a single treatment
baseline treatment can be formed as each trial has the same
parameterization

* In the two way model there is much greater control over non-
informative priors. This can be valuable when you have rare safety
events asymmetry in prior information can potentially lead to a bias
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Alternative approach Full multivariate meta-
analysis

Instead of associating a concurrent control parameter with
each study, an alternative approach is to place random
effects on every treatment main effect

This creates a so called multivariate meta-analysis

Logit (pjr) = 7k
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Ml results from Trelle et al
Comparing Bristol RE model with multivariate random effects

Celecoxib

Contrasts to placebo: Pooled
- (gray), Arm—-based MV model
(green), Trelle (red)

Ilbuprofen

Maproeen e ———

Rofecoxib:




Stroke results from Trelle et al
Comparing Bristol RE model with multivariate random effects

torioamis i Contrasts to placebo: Pooled
. (gray), Arm—based MV model
uproten (green), Trelle (red)

risk ratio
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Discussion of full multivariate meta-analysis model

Allows borrowing of strength across baseline as every
treatment is considered random

Therefore, in rare event meta-analysis, incorporates trials
with zero total events through the random effects

No consistency relations to deal with!

Priors on the variance components can be formed using
Inverse Wishart or using Cholesky decomposition

Breaks the concurrent control structure so automatically will
Introduce some confounding

92 Bayesian approaches to subgroup analysis and selection problems



New challenges

Network meta-analysis with multiple outcomes
- Sampling model (multinomial?)
- Borrow strength across treatment effects

 Surrogate outcome meta-analysis combined with a network meta-
analysis

Network meta-analysis with subgroup analysis

Combining network meta-analysis; meta-analysis of
subgroups and multivariate meta-analysis
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Overall conclusions

Many opportunities for Bayesian methods to help handle
selection problems in drug development

Bayesian approaches to hypothesis testing appear to
provide an attractive way to detect signals

However, in practice models with strong structural
assumptions and or informative priors are often required

Therefore, | prefer estimation based techniques that help
characterize heterogeneity and help assess reproducibility

These techniques:
- Should be backed up with model sensitivity analysis
* Require going well beyond statistics to make final decisions
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