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Model formulation

Dose-response modeling

@ Increasing dose of therapeutical compound.

@ Variety of possible responses:
o Toxicity.
e Inhibition or stimulation.
o Gene expression level.

o Goal:
o Determine if there is any relationship.
e If so, what is the shape of the profile.
o Select threshold doses (e.g. MED).
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Model formulation

Order constraints

@ Compound effect becomes
stronger when dose is increased.

@ Monotone restriction e
(non-decreasing or 2
non-increasing). =

Response
4

@ Zero effect is meaningful. ey

@ No parametrical assumptions s
about dose-response curve o : 2 s
shape.

Martin Otava (l-Biostat, UHasselt) BVS 4 /20



Model formulation

Basic Model

@ One-way ANOVA model formulation:

gj~N(O0,0%)  j=0,12,...,n

= necessary to incorporate order constraints.
@ Testing the hypothesis
Ho:po=pm=p2=...=px-1
against ordered alternative (one inequality strict)

HY po < pp <o <o <k
HIM o > g > o > . > k-1
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Bayesian variable selection model

Reformulation of model

e New notation (non-decreasing trend):

Ko, =0,
E(Yj) = pi =

@ with priors:

Ho ~ ’V(Wa O-i)v

6 ~ N(ns,05)I(0,A), i=1,...

= §; > 0.
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Bayesian variable selection model

Set of all models
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Bayesian variable selection model

Sub-hypotheses

HY o < pn <po <o < kg

Model Up: Mean Structure z

g  po=p1=p2=p3 (
&1 po < p1=p2=p3
g  po=p1<p2=p3
&3 po < p1 < p2=pz
gs  po=p1=p2<pz (00,1
g5 po<p1=p2<pz
86 po=p1 < p2<pz
gr  po<p1<pz2<pz
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Bayesian variable selection model

Modification to BVS

@ The distribution of § is continuous.

= probability of all models except one equals zero!

@ Instead of only sampling §; we need to select which §; occurs in
model.

@ Let be z indicator of §; occurring in the model.

{ 1, 4; isincluded in the model,
zZi =

0, &; is not included in the model.

= E(Yj)=po+ Yz
/=1
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Bayesian variable selection model

BVS model formulation
@ Basic model:

Yy ~ N(ui, 0?)

@ Modeling of mean:
i
E(Yj) = pi = po + Zzﬁz-
=1

@ Priors:

Ho N(nuaai)v
5/ ~ N(n(s,'vo-gi)l(O?A)7

zi ~ Bernoulli(7;),
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@ Hyper Priors:

c72 ~ T(1073,1073),

~

~

~

N(0, 10°),
F(10-3,1073),
N(0,106),
r(10-3,1073).
u(o, 1).
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Results interpretation

Posterior mean of p;

@ Posterior distribution for all dose-specific means.
@ Use posterior mean of such distribution as our estimation.

@ Connection of Bayesian model averaging.

= posterior model probabilities are weights.
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Results interpretation

Posterior probability of model

@ Vector z = (z1,...,2zK—_1) uniquely defines the model.

o Transformation G(z) = 14 32K ' z 2/~ — unique value for each
model.

@ In each MCMC iteration we sample one vector z = (z1,...,zKk—1).

@ Posterior mean of indicator G(z) = r + 1 translates into posterior
probability of the model g;.

= For posterior probabilities holds:

P[G(z) = r + 1|data] = P(g|data).
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Results interpretation

Example: BVS model

@ Incorporating models with equal
means results into less
decreasing profile.

@ Posterior means are averages of
means of particular models at
each MCMC iteration.

@ Connection to model averaging.
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Results interpretation

Example: Posterior probabilities

@ Posterior probabilities of o
. o
particular models.
3,
2 <
o Model gy represents Hy. 39
g o
5°
. 8
@ Model g is strongly supported R
by the data. ol
o
5 [ 1 | [
@ Connection to model selection. 90 gl g2 g3 g4 g5 g6 g7
Model
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Hypothesis testing

Hypothesis testing

@ Depends on: data on hand, prior distributions, set of alternative

hypotheses.

@ We use objective priors and consider the set of all possible alternative
hypotheses.

o Use P(go|data), estimation of P(Hp|data), to reject Ho.

@ Questions:

e How to select threshold for deciding if Hy is rejected?
e There is no straightforward control mechanism like Type | error.

@ Simulation study can give us insight in the properties of BVS.
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Hypothesis testing

Simulation study

Under the Hy and under model g7.

P(Hp|data) < 7 used as criterion for rejecting Hop by BVS.

Ph,(data™) < 7 used as criterion for rejecting Ho by LRT and MCTs.

What happens to false rejections and false non-rejections while
varying threshold 77

@ When maintaining approximately same empirical Type | error as
MCTs or LRT, BVS seems to achieve similar power.

@ How to select threshold for BVS in practice? = future research.
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Simulation study - Results

Power

Hypothesis testing
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Discussion

Conclusion

@ Model uncertainty taken into account!

Model selection: P(g,|data).

Estimation of means: 1 = ZF:O P(g/|data)x,.

Inference: P(gp|data).

BVS framework address all perspectives simultaneously.

According to simulations seems to perform comparably with LRT and
MCTs.
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Discussion

Future research

@ How to select threshold for rejecting Hyp using P(Hp|data)?

@ How to fit BVS models with different types of restrictions (e.g.
umbrella profiles)?

@ How do BVS models behave when used for multiplicity adjustment?
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Discussion

Thank you for your attention!
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