Bayesian Variable Selection Method for Modeling Dose-Response Microarray Data Under Simple Order Restrictions Bayes2013, Rotterdam

Martin Otava

I-Biostat, Universiteit Hasselt

22.05.2013

Research team

- Hasselt University (Belgium):
 - Martin Otava
 - Ziv Shkedy
- Durham University (UK):
 - Adetayo Kasim
- Imperial College London (UK):
 - Bernet Kato
- Zoetis (Belgium):
 - Dan Lin
- Janssen Pharmaceutica (Belgium):
 - Luc Bijnens
 - Hinrich W.H. Göhlmann
 - Willem Talloen

Imperial College London

Dose-response modeling

- Increasing dose of therapeutical compound.
- Variety of possible responses:
 - Toxicity.
 - Inhibition or stimulation.
 - Gene expression level.
- Goal:
 - Determine if there is any relationship.
 - If so, what is the shape of the profile.
 - Select threshold doses (e.g. MED).

Order constraints

- Compound effect becomes stronger when dose is increased.
- Monotone restriction (non-decreasing or non-increasing).
- Zero effect is meaningful.
- No parametrical assumptions about dose-response curve shape.

Basic Model

One-way ANOVA model formulation:

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$
 $i = 0, ..., K - 1$
 $\varepsilon_{ij} \sim N(0, \sigma^2)$ $j = 0, 1, 2, ..., n_i$

⇒ necessary to incorporate order constraints.

• Testing the hypothesis

$$H_0: \mu_0 = \mu_1 = \mu_2 = \ldots = \mu_{K-1}$$

against ordered alternative (one inequality strict)

$$H^{up}: \mu_0 \le \mu_1 \le \mu_2 \le \dots \le \mu_{K-1}$$

 $H^{dn}: \mu_0 \ge \mu_1 \ge \mu_2 \ge \dots \ge \mu_{K-1}$

Reformulation of model

New notation (non-decreasing trend):

$$E(Y_{ij}) = \mu_i = \left\{ egin{array}{ll} \mu_0, & i = 0, \ \mu_0 + \sum_{\ell=1}^i \delta_\ell, & i = 1, \dots, K-1. \end{array}
ight.$$

• with priors:

$$\mu_0 \sim N(\eta_\mu, \sigma_\mu^2),$$
 $\delta_i \sim N(\eta_{\delta_i}, \sigma_{\delta_i}^2) I(0, A), \quad i = 1, \dots, K - 1.$
 $\Rightarrow \delta_i > 0.$

Set of all models

Sub-hypotheses

$$H^{up}: \mu_0 \le \mu_1 \le \mu_2 \le \ldots \le \mu_{K-1}$$

Model	Up: Mean Structure	z
g 0	$\mu_0 = \mu_1 = \mu_2 = \mu_3$	(0,0,0)
g_1	$\mu_0 < \mu_1 = \mu_2 = \mu_3$	(1,0,0)
g_2	$\mu_0 = \mu_1 < \mu_2 = \mu_3$	(0,1,0)
g 3	$\mu_0 < \mu_1 < \mu_2 = \mu_3$	(1,1,0)
g ₄	$\mu_0 = \mu_1 = \mu_2 < \mu_3$	(0,0,1)
g_5	$\mu_0 < \mu_1 = \mu_2 < \mu_3$	(1,0,1)
g 6	$\mu_0 = \mu_1 < \mu_2 < \mu_3$	(0,1,1)
g ₇	$\mu_0 < \mu_1 < \mu_2 < \mu_3$	(1,1,1)

Modification to BVS

- The distribution of δ is continuous.
 - ⇒ probability of all models except one equals zero!
- Instead of only sampling δ_i we need to select which δ_i occurs in model.
- Let be z_i indicator of δ_i occurring in the model.

$$z_i = \left\{ \begin{array}{ll} 1, & \delta_i \quad \text{is included in the model}, \\ 0, & \delta_i \quad \text{is not included in the model}. \end{array} \right.$$

$$\Rightarrow E(Y_{ij}) = \mu_0 + \sum_{\ell=1}^i z_\ell \delta_\ell.$$

BVS model formulation

Basic model:

$$Y_{ij} \sim N(\mu_i, \sigma^2)$$

• Modeling of mean:

$$E(Y_{ij}) = \mu_i = \mu_0 + \sum_{\ell=1}^i z_\ell \delta_\ell.$$

Priors:

$$\mu_0 \sim N(\eta_{\mu}, \sigma_{\mu}^2),$$
 $\delta_i \sim N(\eta_{\delta_i}, \sigma_{\delta_i}^2) I(0, A),$
 $z_i \sim \text{Bernoulli}(\pi_i),$

Hyper Priors:

$$\sigma^{-2} \sim \Gamma(10^{-3}, 10^{-3}),$$
 $\eta_{\mu} \sim N(0, 10^{6}),$
 $\sigma_{\mu}^{-2} \sim \Gamma(10^{-3}, 10^{-3}),$
 $\eta_{\delta_{i}} \sim N(0, 10^{6}),$
 $\sigma_{\delta_{i}}^{-2} \sim \Gamma(10^{-3}, 10^{-3}).$
 $\pi_{i} \sim U(0, 1).$

Posterior mean of μ_i

- Posterior distribution for all dose-specific means.
- Use posterior mean of such distribution as our estimation.
- Connection of Bayesian model averaging.
 posterior model probabilities are weights.

$$\hat{\boldsymbol{\mu}}_{BVS} = \sum_{r=0}^{R} w_r \hat{\boldsymbol{\mu}}_r$$

Posterior probability of model

- Vector $\mathbf{z} = (z_1, \dots, z_{K-1})$ uniquely defines the model.
- Transformation $G(\mathbf{z}) = 1 + \sum_{i=1}^{K-1} z_i \ 2^{i-1} \Longrightarrow$ unique value for each model.
- In each MCMC iteration we sample one vector $\mathbf{z} = (z_1, \dots, z_{K-1})$.
- Posterior mean of indicator $G(\mathbf{z}) = r + 1$ translates into posterior probability of the model g_r .
 - ⇒ For posterior probabilities holds:

$$P[G(\mathbf{z}) = r + 1|\text{data}] = P(g_r|\text{data}).$$

Example: BVS model

- Incorporating models with equal means results into less decreasing profile.
- Posterior means are averages of means of particular models at each MCMC iteration.

$$\hat{\mu}_{BVS} = \sum_{r=0}^R \bar{P}(g_r|\mathsf{data})\hat{\mu}_r$$

• Connection to model averaging.

Example: Posterior probabilities

- Posterior probabilities of particular models.
- Model g_0 represents H_0 .
- Model g_1 is strongly supported by the data.
- Connection to model selection.

Hypothesis testing

- Depends on: data on hand, prior distributions, set of alternative hypotheses.
- We use objective priors and consider the set of all possible alternative hypotheses.
- Use $\bar{P}(g_0|\text{data})$, estimation of $P(H_0|\text{data})$, to reject H_0 .
- Questions:
 - How to select threshold for deciding if H_0 is rejected?
 - There is no straightforward control mechanism like Type I error.
- Simulation study can give us insight in the properties of BVS.

Simulation study

- Under the H_0 and under model g_7 .
- $P(H_0|\text{data}) < \tau$ used as criterion for rejecting H_0 by BVS.
- $P_{H_0}(\text{data}^*) < \tau$ used as criterion for rejecting H_0 by LRT and MCTs.
- What happens to false rejections and false non-rejections while varying threshold τ ?
- When maintaining approximately same empirical Type I error as MCTs or LRT, BVS seems to achieve similar power.
- ullet How to select threshold for BVS in practice? \Longrightarrow future research.

Simulation study - Results

Conclusion

- Model uncertainty taken into account!
- Model selection: $\bar{P}(g_r|data)$.
- Estimation of means: $\hat{\mu} = \sum_{r=0}^{R} \bar{P}(g_r | \text{data}) \hat{\mu}_r$.
- Inference: $\bar{P}(g_0|\text{data})$.
- BVS framework address all perspectives simultaneously.
- According to simulations seems to perform comparably with LRT and MCTs.

Future research

- How to select threshold for rejecting H_0 using $P(H_0|data)$?
- How to fit BVS models with different types of restrictions (e.g. umbrella profiles)?
- How do BVS models behave when used for multiplicity adjustment?

Thank you for your attention!