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Comparison of Medical Diagnostic Technologies

Paired-comparison diagnostic studies

• Two or more diagnostic tests are applied to the same group of
patients

• Assess diagnostic performance between tests

• Compare pros and cons (e.g. invasive procedures versus
noninvasive ones)

Issues in Meta-Analysis

• Correlated outcomes within and across studies

• Imperfect evidence, e.g. relevant data are not reported

• Common practice: use simple techniques and ignore problems
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Running example

RAPT (Review of abdominal pain tools, Liu et al. 2006)

• Diagnosis of acute abdominal pain
• Test 1: doctors using common medical practice (UD)
• Test 2: doctors aided by decision tools (DT)
• Decision tools are: classification statistical models (logistic

regression, neural networks, naive Bayesian, etc.).

• N=9 studies reported paired-comparison between DT and UD

Results of Liu et al. 2006

• No difference in sensitivity between DT and UD

• The specificity of DT is better than the specificity of UD
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Pieces of evidence of diagnostic test accuracy
Test results of the study i (i = 1, . . . ,N) are summarized in two
2× 2 tables:

Results for Test 1

Patient status
With disease Without disease

Test 1 + tpi ,1 fpi ,1
outcome - fni ,1 tni ,1
Sum: ni ,1 ni ,2

Results for Test 2

Patient status
With disease Without disease

Test 2 + tpi ,2 fpi ,2
outcome - fni ,2 tni ,2
Sum: ni ,1 ni ,2
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Review of abdominal pain tools (Liu et al. 2006)

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RAPT

TPR (Sensitivity): Doctors

TP
R

 (S
en

si
tiv

ity
): 

D
r+

To
ol

s

45° line
Regression line

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RAPT

FPR (1−Specificity): Doctors

FP
R

 (1
−S

pe
ci

fic
ity

): 
D

r+
To

ol
s

45° line
Regression line

Figure : RAPT: Diagnostic of acute abdominal pain. Doctors aided by
decision tools (DT) vs. unaided doctors (UD). Left panel: TPRs DT vs
UD. Right panel: FPRs DT vs UD. (N=9)
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Partially observed tables: indirect pieces of evidence

Patients status: with disease

Test 2 outcome
+ -

Test 1 + yi ,1 tpi ,1 − yi ,1 tpi ,1
outcome - yi ,2 fni ,1 − yi ,2 fni ,1
Sum: tpi ,2 fni ,2 ni ,1

Patients status: without disease

Test 2 outcome
+ -

Test 1 + yi ,3 fpi ,1 − yi ,3 fpi ,1
outcome - yi ,4 tni ,1 − yi ,4 tni ,1
Sum: fpi ,2 tni ,2 ni ,2

Table : The marginals are fixed and yi,1 yi,2 yi,3 and yi,4 are unobserved.
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Accounting Lemma of Partial Observed Tables

Unobserved rates:

• pi ,1 = Pr(yi ,1 = 1|Test 1 tp) and pi ,2 = Pr(yi ,2 = 1|Test 1 fn)

• pi ,3 = Pr(yi ,3 = 1|Test 1 fp) and pi ,4 = Pr(yi ,4 = 1|Test 1 tn)

Lemma
The accounting relationships between the observed and unobserved
diagnostic rates are given by:

T̂PR i ,2 = pi ,1T̂PR i ,1 + pi ,2(1− T̂PR i ,1) (1)

and

F̂PR i ,2 = pi ,3F̂PR i ,1 + pi ,4(1− F̂PR i ,1) (2)
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Some remarks

• Equations (1) and (2) are undetermined with four unknowns

• Unexpected solutions are possible (e.g pi ,1 = pi ,2 )

• They impose a deterministic data truncation constrains

• To display indirect evidence of the p′s we can plot:

pi ,2 =
T̂PR i ,2

1− T̂PR i ,1

−
T̂PR i ,1

1− T̂PR i ,1

pi ,1, (3)

and

pi ,4 =
F̂PR i ,2

1− F̂PR i ,1

−
F̂PR i ,1

1− F̂PR i ,1

pi ,3. (4)
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Displaying indirect evidence: RAPT
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The ecological fallacy of two diagnostic tests

Ignoring these data structures may end in an ecological fallacy
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Learning from evidence at face value

• Data on true positive results : (tpi ,1, tpi ,2, ni ,1)

• The unobserved data are modeled as:

yi ,1|tpi ,1 ∼ Binomial(pi ,1, tpi ,1) (5)

yi ,2|fni ,1 ∼ Binomial(pi ,2, fni ,1) (6)

• Then tpi ,2 = yi ,1 + yi ,2 follows a convolution of these two
binomial distributions with likelihood contribution:

Li ,tp =

min(tpi,1,tpi,2)∑
k=max(0,tpi,2−fni,1)

(
tpi ,1
k

)(
fni ,1

tpi ,2 − k

)
pki ,1(1− pi ,1)(tpi,1−k)

×ptpi,2i ,2 (1− pi ,2)tpi,1−tpi,2+k ,

• The false positive tables (fpi ,1, fpi ,2, ni ,2) are modeled in
similar way with likelihood contributions Li ,fp

11 / 19

Introduction Indirect evidence Bayesian modeling Applications Summary References

Combining multiple sources of evidence

Study effects

We model the variability between studies with a scale mixture of
normal distributions (Verde, 2010):

g(pi ,j) = θi ,j ∼ N(µj ,wiλj) (7)

wi ∼ Γ(ν/2, ν/2), (8)

for i = 1, . . . ,N and j = 1, . . . , 4, where g(·) is a link function, λj
are precision parameters and wi mixture weights.

Between populations correlation

We model the correlation between disease and non-disease
populations by

cor(θi ,1, θi ,3) = ρ. (9)
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Interpretation of the mixture weights

We use the posterior distribution of wi to identify studies with
unusual heterogeneity

• A-priory all studies included have a mean of E (wi ) = 1

• Studies which are unusual heterogeneous will have posteriors
with values substantially less than 1, say wi < 0.7

• Clearly if all wi ≈ 1 a multivariate Normal is an appropriate
model

• If some wi are lower than 1 then the effect of these studies will
be down weighted resulting in a robust inferential method
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Further modeling details

Hyper-parameters priors

We use independent and weakly informative priors for
hyper-parameters:

µj ∼ N(0, .1), λj ∼ Γ(1, 0.1), (10)

ν ∼ Exp(1), logit((ρ+ 1)/2) ∼ N(0, 1). (11)

Remarks in computations

• Li ,tp and Li ,fp are approximated by normal likelihoods
(Wakefield 2004)

• Statistical computations are implemented in BUGS and R

• Most of the stochastic nodes in the model use conditional
conjugate, so Gibbs sampling is straightforward
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Posteriors of parameters of interest

Examples of parameters of interest

• Relationship between TPR1 and TPR2 we can use:

Pr (p2 + (p1 − p2)TPR1|Data,TPR1 ∈ (0, 1)) (12)

• Study effects parameters:

Pr (pi ,j |Data) (13)

• Predictive posteriors and model checking parameters:

Pr (ynew1 , ynew2 |Data) Pr (wi < 1|Data) (14)
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Figure : RAPT (FPR). Left panel: tomography lines and posterior
surface. Right panel: Observed rates and regression lines (ν = 2.59).
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Summary

• Direct modeling observed rates could be misleading in
paired-comparison studies of diagnostic test data

• An indirect approach seams to be more appropriate in this
type of meta-analysis

• In practice systematic reviews combine two types of
evidence: studies with paired-comparison design and studies
with evidence on single diagnostic test. How to combine these
two types of evidence remains open
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