

UNIVERSITE de LIEGE

Bayesian Probability Criterion to Assess Analytical Results Reliability

E. Rozet¹, P. Lebrun², B. Boulanger², Ph. Hubert¹

¹ Laboratory of Analytical Chemistry, ULg, Liège, Belgium ² Arlenda SA, Liège, Belgium.

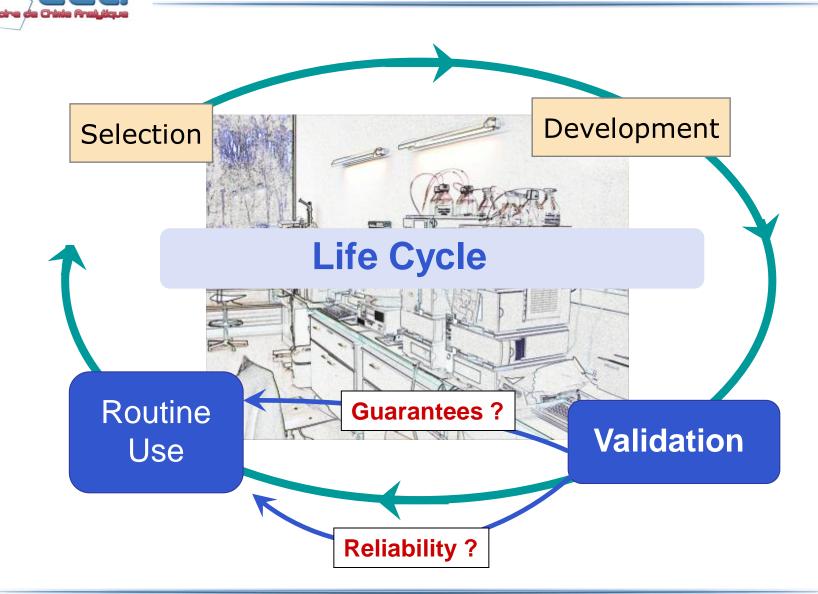
Eric.rozet@ulg.ac.be

Bayes 2013

Rotterdam, May 21, 2013

- What is the final aim of quantitative analytical methods ?
 - Start with the end !
 - Objective: provide results used to make decisions
 - Release of a batch
 - Stability/Shelf life
 - Patient health
 - PK/PD studies, ...
- What matters are the results produced by the method.

Analytical Method Life Cycle



Ug

- Need to demonstrate/guarantee that the analytical method will provide, in its future routine use, quality results
- This is the key aim of Analytical Method Validation !

How ?

- Traditional vision:
 - The Validation Criteria Check List:
 - Selectivity
 - Trueness/Mean Accuracy
 - Precision
 - Linearity
 - Range
 - Limit of Quantification (LOQ)

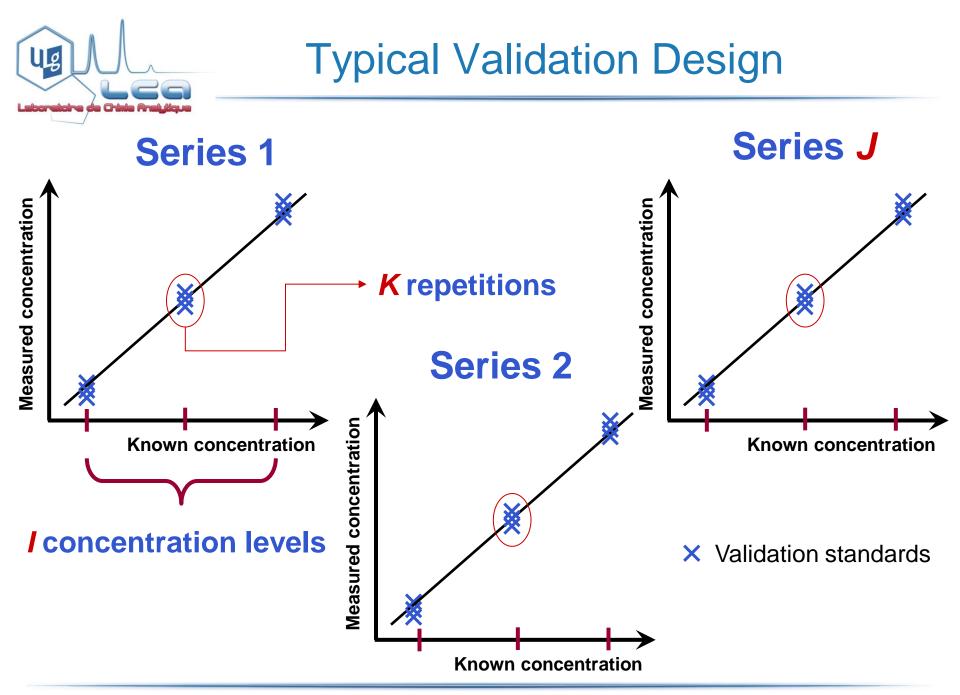
 Traditional vision: – Is a valid method providing reliable results ? **Analytical Method Analytical Results** Bias % Bias< 3% Precision % CV< 2% Are you ready to take this risk?

Aim of validation

Is to give to laboratories as well as to regulatory agencies the **guaranties** that each result that will be obtained in routine will be **close enough** to the unknown true value of the analyte in the sample.

$$\pi = P[X_i - \mu_T | < \lambda] \ge \pi_{\min}$$

λ= predefined acceptance limits π_{min} = minimum probability that a result will be included inside ± λ E. Rozet et al., J. Chromatogr.A, 1158 (2007) 126



By concentration level *i*: – One Way Random ANOVA model

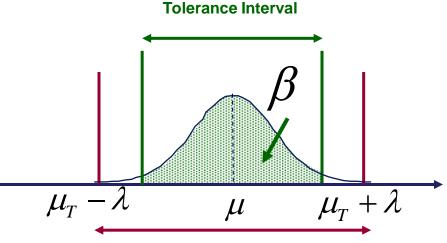
$$X_{i,jk} = \mu_i + \alpha_{i,j} + \varepsilon_{i,jk}$$
$$\alpha_{i,j} \sim N(0, \sigma_{\alpha,i}^2)$$
$$\varepsilon_{i,jk} \sim N(0, \sigma_{\varepsilon,i}^2)$$

- Intermediate Precision variance

$$\sigma_{I.P.,i}^2 = \sigma_{\alpha,i}^2 + \sigma_{\varepsilon,i}^2$$

Based on β-expectation tolerance intervals:

Allows to predict where each future result will fall (*Wald, 1942*).

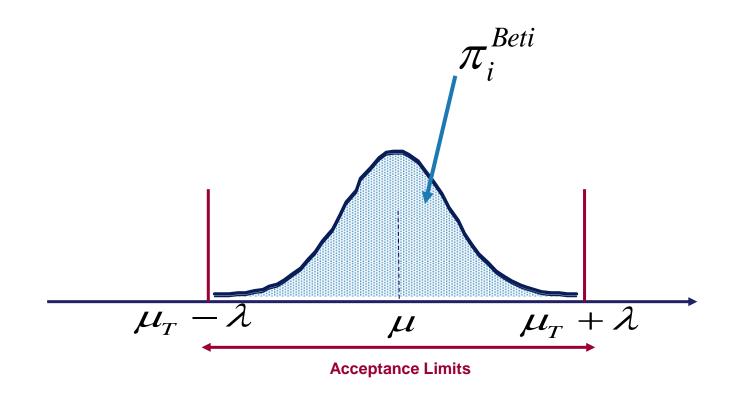


Acceptance Limits

→ If the β -expectation tolerance interval is included inside the acceptance limits, then the probability that each future result will be within the acceptance limits is at least β (ex. 80%).

B. Boulanger et al., J. Chromatogr. B, 877 (2009) 2235

Based on β-expectation tolerance intervals:



Based on β-expectation tolerance intervals:

$$\pi_i^{Beti} = P\left[X_i > \mu_{T,i} - \lambda\right] + P\left[X_i < \mu_{T,i} + \lambda\right]$$
$$= P\left[t(f) > \frac{\left(\mu_{T,i} - \lambda\right) - \overline{X}_i}{\hat{\sigma}_{I.P.,i}\sqrt{1 + \frac{K\hat{R}_i + 1}{N(\hat{R}_i + 1)}}}\right] + P\left[t(f) < \frac{\left(\mu_{T,i} + \lambda\right) - \overline{X}_i}{\hat{\sigma}_{I.P.,i}\sqrt{1 + \frac{K\hat{R}_i + 1}{N(\hat{R}_i + 1)}}}\right]$$

- <u>N</u>=JK.
- X_i is the mean results
- *t(f):* Student distribution with *f* degrees of freedom using Satterthwaite approximation

W. Dewé et al., Chemometr. Intell. Lab. Syst. 85 (2007) 262-268.

Maximum likelihood estimator

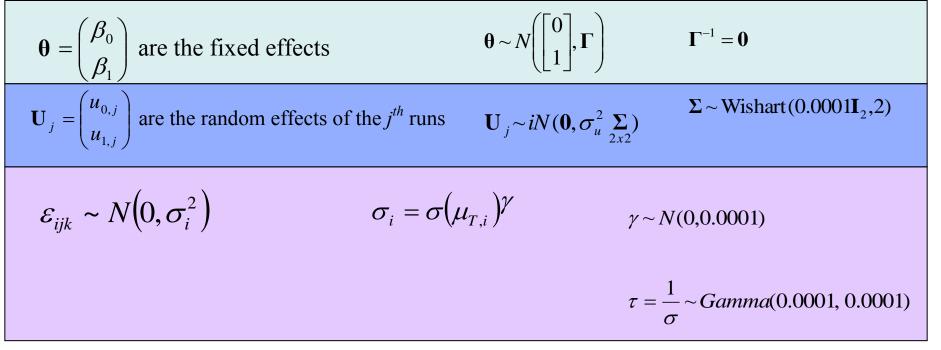
$$\pi_{i}^{ML} = P \Biggl[Z > \frac{\left(\mu_{T,i} - \lambda\right) - \overline{X}_{i}}{\hat{\sigma}_{I.P.,i}} \Biggr] + P \Biggl[Z < \frac{\left(\mu_{T,i} + \lambda\right) - \overline{X}_{i}}{\hat{\sigma}_{I.P.,i}} \Biggr]$$

where Z is a standard normal variable.

B. Govaerts et al., Qual. Reliab. Engng. Int. 24 (2008) 667-680.

- Aims: modeling the reliability probability over the whole concentration range
- Model: Linear model with random slopes and intercepts

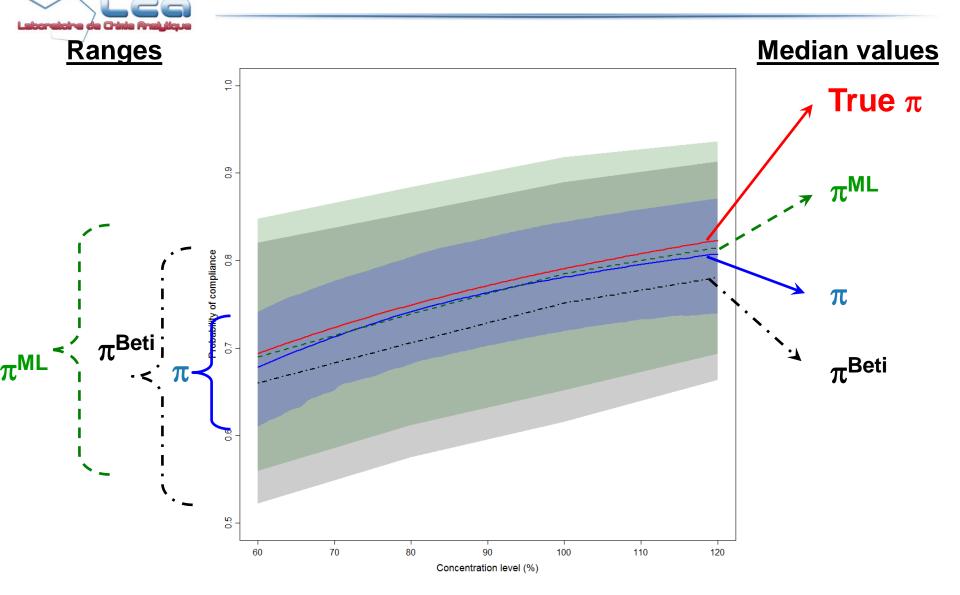
$$X_{ijk} = \beta_0 + \beta_1 \mu_{T,i} + \mu_{0,j} + \mu_{1,j} \mu_{T,i} + \varepsilon_{ijk}$$



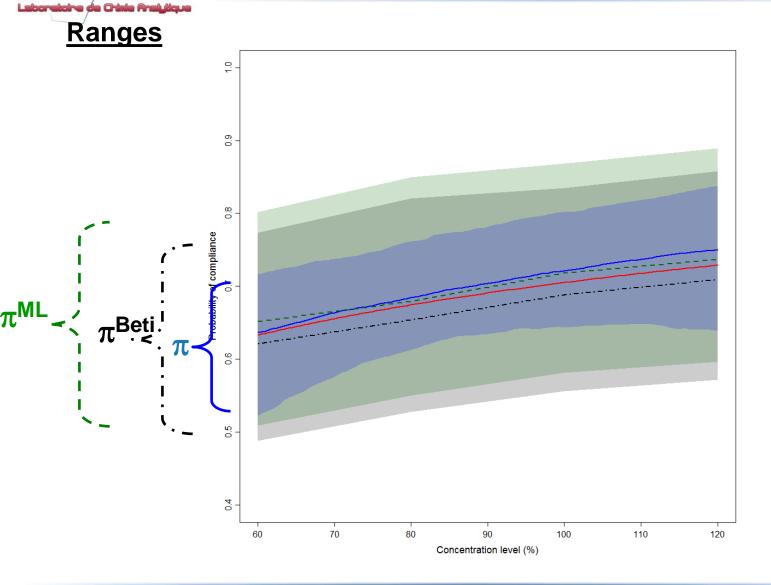
Simulations

- 4 scenarios:
 - Conditions
 - Analytical Method relative bias: 0% and 10%
 - Analytical Method I.P. RSD: 6.5% and 16%
 - Known concentrations ($\mu_{T,i}$):60%, 80%, 100% and 120%
 - Acceptance limits: $\lambda = \pm 20\%$
 - Nb Series: *J*=4
 - Nb Repetitions: K=4
 - Criteria
 - Compare median estimated reliability probabilities to true probability
 - Compare ranges (min to max) of estimated reliability probabilites

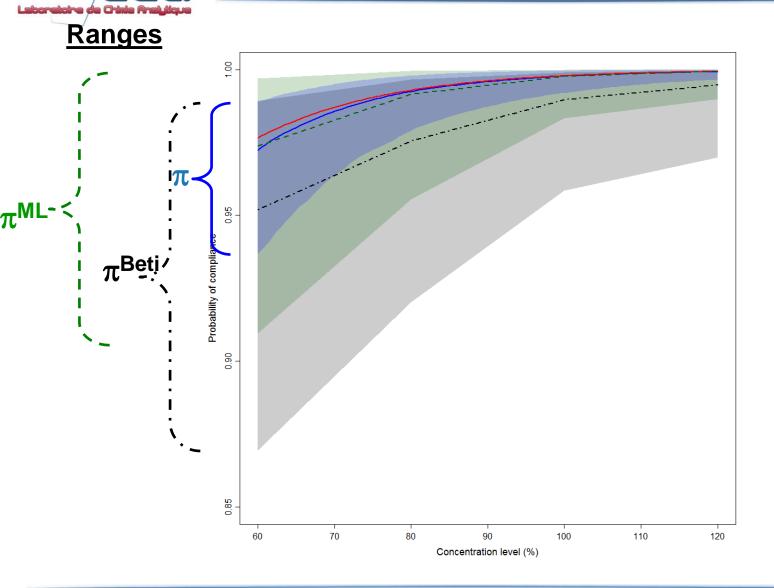
Case 1: 0% bias - 16.0% RSD



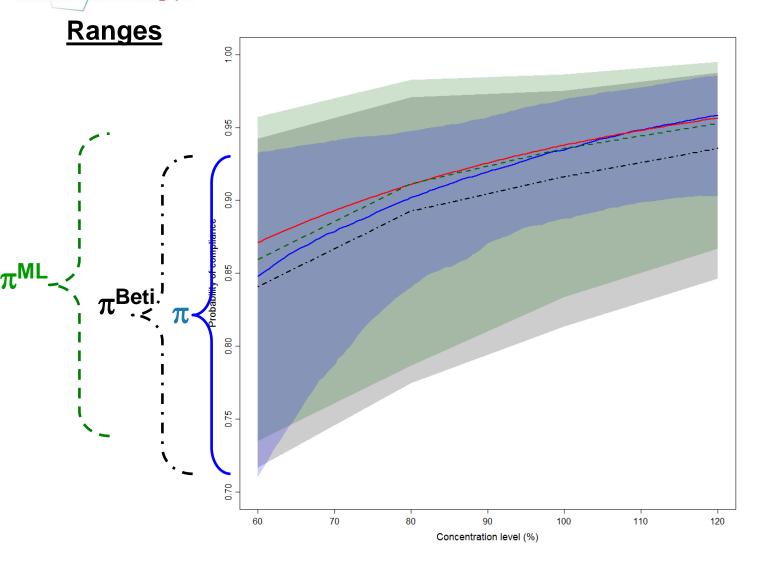
Case 2: 10% bias - 16.0% RSD



Case 3: 0% bias - 6.5% RSD

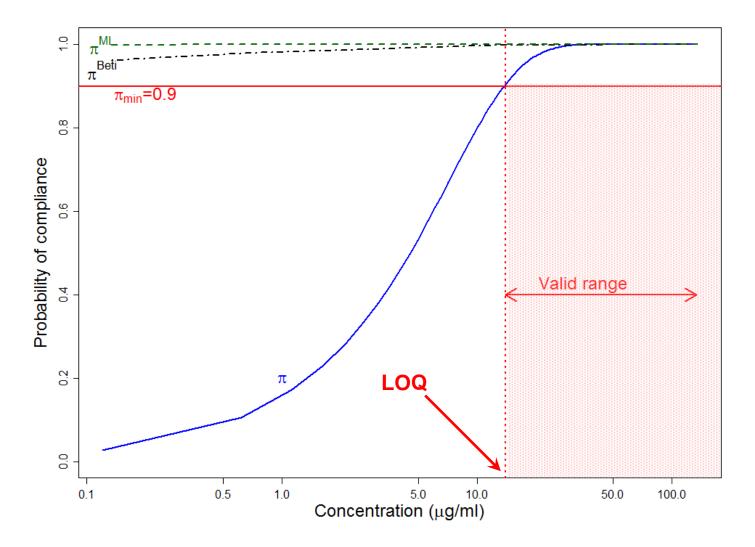


Case 4: 10% bias - 16.0% RSD

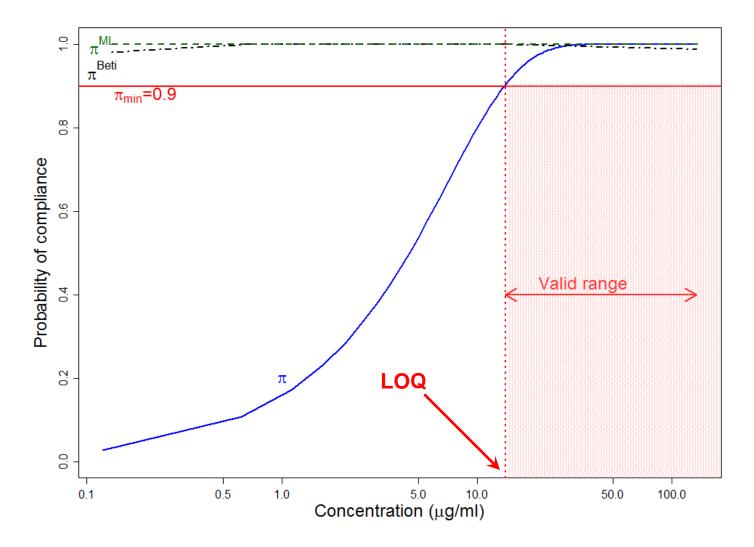


- Validation of a bioanalytical method:
 - SPE-HPLC-UV method for the quantification of ketoglutaric acid (KG) and hydroxymethylfurfural (HMF) in human plasma
 - Known concentrations (μ_{T,i}): 0.13, 0.67, 3.33, 66.67 and 133.33 μg/ml
 - Nb Series: *J*=3
 - Nb Repetitions: *K*=4
 - Acceptance limits: $\lambda = \pm 20\%$
 - Minimum reliability probability: $\pi_{min}=0.90$

Ketoglutaric acid



Hydroxymethylfurfural



- Switch from the traditional check list validation to a rewarding, useful and predictive method validation
- The quality of future results (π) must be the objective of method validation and not the past performances of the method.
- The Bayesian reliability probability estimator is less biased and more precise.
- In such a way, the **risks** are known at the end of the validation.
- This decision methodology is fully compliant with actual regulatory requirements

Thanks for your attention

Check our publications at: <u>http://orbi.ulg.ac.be/</u>

• Contact:

Eric.Rozet@ulg.ac.be

