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The Mixed Effects SUR Model

(SUR = “seemingly unrelated regressions”)

* The basic mixed model form: Y =X +Zy +e

« Here, B is a vector of fixed effects and y is a vector of random effects.
* This is a multivariate regression model with 7 response types.
* Here, it is typically assumed that:

Y~ N(O»G) for some variance-covariance matrix, G.

€~ N(O»Z) for some variance-covariance matrix, 2.



The Mixed Effects SUR Model

(SUR = “seemingly unrelated regressions”)

* The basic mixed model form: Y =X +Zy +e

* Here, B is a vector of fixed effects and y is a vector of random effects.

* This is a multivariate regression model with 7 response types.

* A somewhat more detailed format can be:
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* Here, B = (/51,,---,/5;: ), but notationally it is more difficult to describe ¥ in detail.
This is because random effects can apply across groups of observation vectors, due
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to the hierarchical nature of many designs involving random effects.




The Mixed Effects SUR Model

(SUR = “seemingly unrelated regressions”)

* The basic mixed model form: Y =X +Zy +e
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Note that each response type (1,2,..,7) the fixed-effects model can be of a different
model form (unlike that for the classical multivariate regression model).

Note also that for each response type, the random-effects part of the model can be
of a different model form. Notationally, this needs to be achieved though the Z matrix.



The Mixed Effects SUR Model

(SUR = “seemingly unrelated regressions”)

* The basic mixed model form: Y =X +Zy +e

* Suppose we have a model with two response types, two factors x; and x,, and
some y batch effects as follows:

Model 11 yj = xi Bi +2y1 +e1 = Bo1 + Bi1x1 + Ba1x2 + Y01 + 71100 + V21X + €|
Model 2: yy =x)'By + 2272 +€3 = Bop + Bioxi + 702 +V12¥1 +€)
where x| = (1,x1,x) )' ,xp = (L,x )’ , 21 = (Lxg, 0 ), ,and zp = (1,x1)

* For the models above, all batch effects are in blue.

* Note that we have batch-by-factor interactions, but for response type 2

we cannot have a batch-by- x, interaction effect because model 2 does not have
an x, factor.



Two Gibbs Sampling Algorithms

(using conditionally conjugate priors)
Y=Xp+Zy +e, wherey ~N(0,G)ande~N(0,Z)

Conditionally Conjugate Priors:

-1 -1
B~N(b,B),G ~W(n,I),2" ~W(v,R)
e A useful theorem from Lindley and Smith (1972):
Suppose ¥ ~ N (4,6,C;),and 6 ~ N(4,0,,C; ), then 6,|y~N(Dd,D)
-1
where D = [A{Cl'lAl +C2'1] and d =A/C{y+C5'4,0,

* This theorem is useful for obtaining posterior distributions for # and y (given y and
other parameters).



Two Gibbs Sampling Algorithms

(using conditionally conjugate priors)
Y=Xp+Zy +e, wherey ~N(0,G)ande~N(0,Z)
Conditionally Conjugate Priors:
B~Nb,B),G ' ~wu,r),="~ww,R)

Algorithm #1: Algorithm #2:

ply,G,2, data B 1G,2 data
B,y |G,2,data
y|p,G,2 data v|B,G,> data
G|y G|y
2| B,y,data

2| p,y,data



Two Gibbs Sampling Algorithms

(using conditionally conjugate priors)
Y=Xp+Zy +e, wherey ~N(0,G)ande~N(0,Z)
Conditionally Conjugate Priors:
B~N(b.B), G ~wmn,r),s'~ww.R)
* How do we choose specific values for b, B, 1, I, v, and R for the priors?

 Recommendations from Shafer and Yucel (2002)
In the absence of informative prior information do the following:

- Set b=0, and B-'=0 (i.c. set the precision matrix equal to the zero matrix)

- Set 17 = dimension of G and v = dimension of 2.
-Set [N = EA(G_1 )= n_lé_l and R = E(Z_l )=v_1§’_1, where G and 3 are estimates.

* But | have some suspicions about possible biases these priors could induce.



Use of a scaled inverted-Wishart prior

* The Wishart prior for 31 or G~ can be somewhat restrictive with regard to
specification of information about the precisions (or equivalently the variances).

* An approach recommended by Gelman and Hill (2007) is to use a scaled
inverted Wishart prior for the variance-covariance matrix).

* Consider X = DOD , where Q is an inverted-Wishart rv with (r+1) df and
scale matrix equal to an rxr identity matrix. Here, D is a diagonal matrix of (positive)

scaling variables.

* So we have:
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* So we have:
5
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Use of a scaled inverted-Wishart prior
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e Recall that @ ~ IVV(r+1)(I). Gelman and Hill (2007) state that the correlation
parameters associated with @ have a (marginal) uniform distribution on (-1,1).

9ij
* For Q, these correlation parameters are:
ViiA4jj )
* Note also that the correlation parameters for Sare: %ij Sié:jqﬁ 1ij

* Hence, we can use Q to build a weak prior for the
correlation parameters for 2.

%) \EFq\ay; N

* However, the diagonal elements of Q alone may be inadequate to model the variances

in 2.



* So we have:
5
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Use of a scaled inverted-Wishart prior
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* Recall that O ~ IVI/(,,+1)(I). Gelman and Hill (2007) state that the correlation

parameters associated with @ have a uniform distribution on (-1,1).

* However, the diagonal elements of Q alone are inadequate to model the variances

in 2.

e But since E,-zq,',' = Giz (i = 1,...,7’)  the §;'s can be used to rescale the ¢;;'Sso that

: 2 .
we can get better priors for the O; terms in 2.



Use of a scaled-inverted-Wishart prior

* But since E,-zq,'i = Giz (i = 1,...,7’), the &;'Scan be used to rescale the ¢;; 'S so that

: 2 .
we can get better priors for the O; terms in 2.

* Gelman and Hill (2007) recommend uniform or half-t priors for the &i terms.

| have used independent uniform priors for each Si

* If we can find an informative upper bound for each 9i, that may help with setting

a prior for the scaling parameter &; .

* Because the correlations do not depend upon the &;'s, we can take the &;'s to
have any positive values.

2 2 2
* We could take &; = u,-/ gi; for a uniform rv ;i which would resultin 0; =& q;; =u; .

| have tried with bugs and it crashes. ®



Fitting a ME-SUR model for an API process

* This is an example for fitting a mixed-effect multivariate model for an early phase
synthetic chemistry process. (Acknowledgements: Gregory Stockdale, GSK Stat. Sciences.)

* There are four response types, each modeled by a different (linear) model form.

* The experiment used four factors in a central composite design with 30 runs.
- Each run represents a batch run of a chemical reaction.
- Within each batch, three measurements were made of each of the four response

types.

» So for each response type, we have a within-batch (measurement error) random
effect and a random batch effect.

* So if we denote the within-batch (measurement error) random effect by e, we have
e= (81,82,63,84 )l , with Var(e)= 2.
* Likewise, if we denote the random batch effect by y, we have

v =(11.72.73.74) , with var(y )= G.



Fitting a ME-SUR model for an API process

* The factors chosen for the experimental design were:
x,="temperature”, x,="pressure”, x,="catalyst loading”, x,="reaction-time”.

* The response variables measured (and specifications) are:
Y,="% starting material isomer” (<0.15%), Y,="% product isomer” (<2.0%),
Y3="% impurity #1"(<3.5%), and Y,="% API purity”(>95.0%).

* The linear models used for optimization are:

Yj = By + Boxy + P3xg + Bax3 + Bsxg + Pex3 + Brx3 + Pexf +11 + ey
Yy =g + Prox1 + Pr1x3 + 72 + €

Y3 = Pio + P13X1 + Br4X) + P15X3 + P1eX1x3 + 73 + €3

Y4 =Pr7+Prgx3+v4+ey

Y = ()/1,)/2,)/3,)/4 ), , With Var(y)= G. e= (61,62,63,84 )’, with Var(e)=2.

* More compactly we have: Yi = X;ip +v;+ej;, where ¥j; is thei™ measurement

y
within the j® batch.
15



Fitting a ME-SUR model for an API process

Priors Used:
- = (/31,...,[3’17)’ P~ N([J’A,B) where f is the MLE and B lisa diagonal

precision matrix with diagonal values of 0.00001 .

* For G and 2, | used scaled inverted-Wishart priors.

- For the & scaling parameters | used independent uniform distributions

up per bound
with support on (:0; or )

bound . .
- Here, Gflpper P Values were obtained from a 99% (one-sided)

Bonferroni-adjusted confidence interval (adjusted for the eight variance parameters).

Software Used:
R and the R package BRugs which calls bugs.



Fitting a ME-SUR model for an API process

Results:

Compared to
MLE’s from

SAS Proc Mixed

MPE=“median
posterior estimate”

Priors:

» weak beta prior
* scaled inverse-
Wishart priors for
G and 2.

* scaling
parameters
uniform on

upper bound
i)

beta values G values Sigma values

MLE MPE MLE MPE MLE MPE
bl -7.074  -7.087 G11 0.287 0.279 S11 0.036 0.037
b2 1.214 1.211 G12 0.036 0.041 S12 -0.015 -0.016
b3 -0.262  -0.251 G13 0.0098  0.0090 S13 0.00096  0.00092
b4 -0.430  -0.433 G14 -0.018  -0.014 S14 0.00016  0.00021
b5 -0.200  -0.194 G22 1.957 1.933 S22 0.173 0.174
b6 0.850  0.883 G23 0.094 0.086 S23 0.0017 0.0016
b7 0.741 0.766 G24 -0.127  -0.116 S24 -0.0021  -0.0019
b8 -2.080  -2.117 G33 0.035 0.035 S33 0.0029 0.0029
b9 -6.777  -6.779 G34 -0.038  -0.036 S34 0.0000 0.0000
bl0  -1.462 -1.468 G44 0.048 0.048 S44 0.0029 0.0028
bll -2.610  -2.600
bl2  -3.300 -3.299
b13  0.201 0.200
bl4  0.041 0.038
bl5  -0.090 -0.095
bl6e  3.076  3.076
bl7 0214  0.219

17



Fitting a ME-SUR model for an API process

MPE=“median

posterior estimate”

ESS =“effective
sample size”

Priors:

* weak beta prior
* scaled inverse-
Wishart priors for
G and 2.

* scaling
parameters
uniform on

upper bound
(O, o; )

beta values G values Sigma values
MPE  ESS MPE  ESS MPE ESS
bl 27.087 896 Gll1 0279 877 S11 0.037 1000
b2 1211 1000 G12 0.041 1000 SI2  -0.016 863
b3 20251 1000 G13 0.0090 1000 S13 0.00092 1000
b4 0433 966 Gl4 20.014 1000 S14  0.00021 1000
b5 0.194 1000 G22 1.933 925 S22 0.174 1000
b6 0.883 952 G23 0.086 1000 S$23 0.0016 1000
b7 0.766 962 G24 20.116 1000 S24  -0.0019 1000
b8 2.117 1000 G33 0.035 1000 S33 0.0029 1000
b9 6779 564 G34 20.036 1000 S34  0.0000 1000
b10  -1.468 1000 G44 0.048 1000 S44  0.0028 883
bll  -2.600 992
bl2 3299 580 . . .
a oo Quick MCMC Overview:
b14 0038 659 * Five independent chains used
b15 0095 1000 * 10,000 burin-in iterations per chain
bl6 3.076 613 * thinned each chain by 100
bl7 0219 621 e 1,000 total MCMC samples kept

All Gelman-Rubin stats < 1.1

18



Fitting a ME-SUR model for an API process

beta values G values Sigma values
Re SUu | t S: MLE MPE MLE MPE MLE MPE
Compared to bl -7.074  -7.084 Gl1 0.287  0.271 S11 0.036 0.159
) b2 1.214  1.201 G12 0.036  0.049 S12 -0.015 -0.003
MLE's from_ b3 -0.262 -0.231 G13 0.0098 0.050 S13 0.00096 -0.043
SAS Proc Mixed b4 -0430 -0.422 Gl4  -0.018 0.052 S14  0.00016 -0.0060
b5 -0.200 -0.147 G22 1.957 1.900 S22 0.173 0.197
MPE=“median b6 0.850 0.935 G23 0.094 0.089 S23 0.0017  -0.011
posterior estimate” b7 0.741  0.788 G24 -0.127  -0.076 S24 -0.0021  0.0098
b8 -2.080 -2.209 G33 0.035 2.082 S33 0.0029 1.276
b9 -6.777 -6.785 G34 -0.038  1.537 S34 0.0000  0.081
Priors: bl10  -1.462 -1.555 G44 0.048 1.691 S44 0.0029 1.272
» weak beta prior bll -2.610  -2.592
e Schafer-Yucel b12  -3.300 -3.292
Wishart priors for bl13 0201  0.143
G and 2. bl4  0.041  0.0692
* MLE’s for G and bl5 -0.090 -0.199
2 used for the bl6  3.076  3.083
Schafer-Yucel b17 0214  0.233

priors.



Fitting a ME-SUR model for an API process

beta values G values Sigma values
MPE  ESS MPE  ESS MPE  ESS
MPE=“median bl -7.087 889 GIl 0279 1000 S11 0.037 1000
posterior estimate” b2 1211 937 GI2  0.041 1000 S12 -0.016 1000
b3 -0251 940 GI3  0.0090 1000 S13 0.00092 1000
ESS =“effective b4 -0.433 1000 Gl4  -0.014 1000 S14  0.00021 1000
sample size” b5 -0.194 1000 G2 1933 1000 S22 0174 974
b6 0.883 1000 G23 0086 932 S23  0.0016 1000
b7 0.766 1000 G24  -0.116 973 S24  -0.0019 1000
b8 -2.117 1000 G33 0035 957 S33  0.0029 1000
Priors: b9  -6.779 1000 G34  -0.036 1000 S34  0.0000 1000
* weak beta prior b10  -1.468 988 G44  0.048 1000 S44  0.0028 986
* Schafer-Yucel bll  -2.600 1000
Wishart priors for bI2  -3.299 1000 Quick MCMC Overview:
G and 2. bI3~ 0.200 1000 * Five independent chains used
* MLE’s for G and bl4  0.038 1000 SR . :
* 10,000 burin-in iterations per chain
2’ used for the bl5  -0.095 1000 : :
Schafer-Yucel b6 3076 1000 * thinned each chain by 100
priors. b17 0219 1000 * 1,000 total MCMC samples kept

All Gelman-Rubin stats < 1.1



ICH Q8 Definition of Design Space

The ICH Q8 FDA Guidance for Industry defines "Design Space" as:
"The multidimensional combination and interaction of input variables
(e.g. material attributes) and process parameters that have been

demonstrated to provide assurance of quality.”

Further more....

“Working within the Design Space is not considered as a change. Movement
out of the Design Space is considered to be a change and would normally
initiate a post regulatory approval change process. Design Space is

proposed by the applicant and is subject to regulatory assessment and

approval”.

21



ICH Q8 Definition of Design Space

® The ICH Q8 FDA Guidance for Industry defines "Design Space" as:
"The multidimensional combination and interaction of input variables
(e.g. material attributes) and process parameters that have been

demonstrated to provide assurance of quality.”

®* From a Bayesian perspective, one could define the ICH Q8 design space as
{xEX |Pr(YEA | x,data)z R }

where X is a vector of process factors, ¥ is the experimental region,

Y is a vector of response-types, A is an acceptance region, and R is a reliability

value for “assurance” of quality.

* The above probability measure is based upon the posterior predictive

distribution for Y given the process factors.

22



Application of the Bayesian Predictive Model to a Design Space Computation

(Here, | am using the scaled inverse-Wishart priors)
* For a future batch, we have the model:

. .th
Y; vew = Xi newB +Vnew + € new»> Where Y; .. isthei™ measurementfor the new batch.
Here, i =1,2,3.

* For a design space, we may wish to represent our batch response by

* :
Y, onw = XyewB + ¥ new » Where the measurement error is removed.

* So we could define a Bayesian ICH Q8 design space as:

{xEX |Pr(Y*EA | x,data)z R }
for some experimental region, ), some acceptance region, 4, and reliability level, R.
* Here, 4=(0,0.0015)x(0,0.02)x(0,0.035)x(0.95,1)

* This predictive model was fit using a scaled inverse-Wishart prior and normal
distributions for the y’s and é€’s.



Application of the Bayesian Predictive Model to a Design Space Computation

(Here, | am using the scaled inverse-Wishart priors)

* For a design space, we may wish to represent our batch response by
* .
Yo = XpewB + ¥ new » Where the measurement error is removed.

 Steps involved:
1. Sample from the joint posterior of ( B, y).
2. Compute Y - Xp "‘\V . (Here X contains the elements of x)
3. Compute ](Y*EA}
4. Do Steps 1-3 N times (for large N, 1,000 say) to compute f?(x) as a Monte Carlo

%k
estimate of PT(Y € 4| x,data

5. Do Steps 1-4 over a grid of x’s to map out the design space:
{xEX |Pr(Y*EA | x,data)z R }

Here, ) is the experimental region.



Application of the Bayesian Predictive Model to a Design Space Computation

* Do Steps 1-4 over a grid of x’s to map out the design space: {xEX |f7 (x) = R }
where ﬁ(x) is the Monte Carlo estimate of p(x)= Pr(Y*EA | x, data)

* Note: We could get smoother estimates of 15("), and perhaps use a less fine grid
over x, if we fit a (meta-model) surface to the f?(x) values, e.g. using a
spline-based regression method. This gives a closed-form function, ﬁ(x), for the

reliability surface.
count + 1

N+2
where count= # of times Y* isin 4 and N is the number of MCMC values used.

* For this study | used a Bayes(!) estimate for P(x)which is ﬁ(x)=

* | then do a logistic transform on the f)(x) values and fit them to a generalized

additive model using X1,X2,X3,X4 as the predictor variables.

* Back-transforming after fitting produces the reliability surface based upon the
fitted meta-model.

25



Reliability surface from fitted meta-model
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Design Space from fitted meta-model
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Summary

 Hierarchical models are a very important class of models for many applications:
pharmaceutical discovery and development, industrial optimization, natural and
social sciences, etc.

* However, statistical inference for multiple-response models with variance
component matrices is both statistically and computationally difficult.

* Maximum likelihood estimation often produces estimates for the variance
components matrices that are not positive definite.

* The Bayesian approach can avoid this problem, but good priors for the variance
component matrices can still be tricky to develop.
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