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  Target : Understand and gain knowledge about a 
process/method to find a parametric region of reliable 
robustness for future performance of this process/
method -> assurance of quality 

  This region is the Design Space 

   We are also interested in the risk not achieving 

: domain 
: set of combinations of process parameters 
: responses obtained for the       condition 
: pre-defined set of acceptance limits 
: quality level (min. probability to achieve    ) 

     yield 64% 



  Application (Boulanger et al., NCB09, Boston) 

X 

Target 

Y 

Predictive 
Model f 

Specs 

λL1 <Y1 < λU1 

λL2 <Y2 < λU2 

DS 

Designed experiments 



  In applied DoE literature, it is frequent to see the term 
“Design space” 
  (as the design of experiment itself…) 
  as the zone where mean responses satisfy acceptance limits 

  But, mean responses  
  do not provide any clue about process reliability 
  fail to give any information on how the process will perform in the 

future 
  will certainly give disappointing and unexplained results for the 

future use of the process/method ! 
  ICH Q8 definition of DS is not met 

  Friends don’t let friends use “overlapping means” to calibrate an ICH Q8 
   design space, J. Peterson, NCB 09, Boston 



  Curse of dimensionality 
  Using classical (frequentist) multivariate models 

  Many responses (M) and many parameters (F) 
  Cost of experiments leads to light DoE (low N) 
  d.f. : ν = N-(F+M)+1  => possibly a negative value ! 

  (Predictive) Tolerance intervals 

  A (posterior) predictive approach must be envisaged 
  Gain information through prior knowledge 
  Takes into account model and data uncertainty 
  Easier interpretation of results 

“In the theory of statistical tolerance regions, as usually 
presented in frequentist terms, there are inherent 
difficulties of formulation, development and interpretation”  
Aitchison, Bayesian Tolerance Intervals, 1964 



  Bayesian analysis is well suited for 
  Standard multivariate regression, 
  Seemingly unrelated regression, non-linear, random effect, etc. 

  In simple cases, a predictive distribution of the responses can 
be identified and easily used 

  In complex cases, MCMC simulations from the likelihood and 
the parameter prior distributions are required 

  In less complex cases, sampling from identified parameters 
posterior distributions are used 

  Bayesian computations 
  Posterior: P(θ |data)= P(data|θ).P(θ)/P(data) P(data|θ)   . P(θ) 

         Likelihood . Prior 

  Predictive:  P(Y*|data) =   P(Y*|θ) . P(θ |data) dθ	





  For the M-responses model (Box & Tiao 1973, Press 2003, Peterson 2004), 

  using non-informative prior distribution of the parameters, 

  posterior distributions can be computed (Bayes theorem), 

OLS estimate of B 

ν = N-(F+M)+1 



  The predictive distribution of responses at      is identified 
as a multivariate Student distribution: 

  Now, what if informative priors are used ?  
  Conjugate prior distributions : 

Prior scale matrix 

Prior d.f. : 

Prior mean parameters 

Prior precision matrix of the parameters, 
(common for each response) 

is the estimated covariance matrix 



  Posterior distribution can be identified (Bayes theorem), 

  With some (tedious) computations, it is possible to find 
the predictive distribution of a new response at      :  



  This predictive distribution is of particular interest as 
  There is no need to simulate from the prior or even the 

posterior distribution of parameters 
  No convergence issue in MCMC 

  It gathers the uncertainty of data and model parameters for a 
new responses vector 

  Quantiles of the multivariate Student are β-expectation 
tolerance intervals (Guttman, 1969) 

  It is a generalisation of the multivariate Student distribution for 
non-informative prior distributions 



  Numerically get the posterior distribution using MCMC on prior 
distribution and likelihood (e.g. Winbugs)  

  Direct sampling from the identified posterior distribution of 
parameters 

  Direct sampling from the identified predictive distribution 

(Simulated data) 
Densities are similar  

whatever computation types ! 

Samples from the predictive distribution 

Sampling from id. posterior 
MCMC Sampling prior 
Sampling from id. predictive 

Sampling from id. posterior 
MCMC Sampling prior 
Sampling from id. predictive 
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  Chromatographic method 

Time (min.) 

Tuning parameters of the system (HPLC) 

Time (min.) 

‘Bad’ chromatograms are difficult 
to interpret and to use 

Peaks correspond to analytes 

Good chromatograms with identified 
compound behind each peak 

 further analyses are possible 

Complex problem  
addressed with DoE 



  We are interested to find the set of parameters settings 
that will give satisfactory results in the future use of this 
method (=DS). 
  ‘Satisfactory’ means ‘good’ chromatograms with well separated 

and nice-shaped peaks, and short run time, if possible 

 Potentially, many responses are modelled together 
  Each peak = 3 responses 
  Even more responses than experiments ! 

 However, clear correlation structure exists among these 
responses 

 Linear relationship is assumed between (transformed) responses 
and predictors  



  The use of Bayesian methods is of no help if responses 
are not carefully chosen 
  Ex: quality criterion of interest (minimal resolution) is modelled 

with (Bayesian) linear model 
TR1 
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Points of the DoE 

Experiments Model Reality What is this criteria ? 
| | 



It is advised to model responses that show nice modelling 
properties (Massart et al. 1997, Snyder et al. 1997) 
  Even if they are not directly related to ‘quality’ 
  Quality criteria must be computable from the selected responses 

T0 
Dead time of the 
chromatographic 

system 

We assume M responses (=3*P peaks) are observed (NxM)         (NxF)(FxM) 

Y = g(B1,A1,E1,…,B3,A3,E3)  



  What we do: 

X 
Y 

Specs 

λL1 <O1 < λU1 

λL2 <O2 < λU2 

Predictive 
Model f 

Target 
A second “layer” is added, relating 

responses to quality criteria 

Responses 

Quality criteria O(x) = f(Y(x)) 

Designed experiments 

DS 



  Second layer 
 Combinations of responses 

Ex: 

 DS is the set of conditions, such that the predictive probability 
that Objectives will be simultaneously (jointly) within the 
acceptance limits is higher than  

| | 



E3 
A3 
B3 

E2 
A2 
B2 

E1 
A1 
B1 

M=9 responses are modelled 
with the Bayesian multivariate 

regression 

Is there a zone in my domain where I can guarantee  
a satisfactory chromatogram 

 in the future use of the chromatographic method ? 

A slice of the design is represented -  
DoE involves 2 factors : 

- pH (quadric) 
- Gradient time (quadratic) 
+ interactions 



  Model : set up of informative prior distributions 
  Assume no knowledge on the conditional distribution of B 

Matrix of 0 or    are typical choices A ‘flat’ diagonal (FxF) matrix 
(~0 precision) 



The desired correlation matrix is  
rescaled so it is comparable to  

the estimated scale matrix A*≡ {aij*} 

: degree of certainty of the prior  
 as low as possible (e.g. 3 or 4) 

= 1 
= 0.9 

Within peak structure 

Between peaks structure 

E3    A3    B3 E2    A2    B2 E1    A1    B1 



  Thus, responses are correlated 3 by 3 
  Why not one model for each peak (3 responses only) ? 

  For the sake of generality, it is enviable to have a model that can 
handle any correlation structure 

  Two different but structurally very similar compounds will have 
responses that will be correlated (e.g. enantiomers) 

  When independence can be assumed, it can be interesting to 
create several independent multivariate models with smaller 
covariance matrices 

In this example, peak 1 and peak 3  
are assumed correlated with  

prior correlation ρ3 



  Prior parameters are directly used in the predictive 
distribution of responses 

  Note that if Ν0 was set to 0 (N0≥0), The prior Inverse-Wishart 
distribution would have not been defined (                            ) 

  But the multivariate Student is still defined if ν +N0 is high enough ! 

Bayesian predictive intervals (transparent bands)  
are quantiles of the multivariate Student 



  Monte-Carlo simulations allow the (joint) predictive 
distribution of quality criteria to be propagated from the 
responses 

(B1,A1,E1,…,B3,A3,E3)  = g-1(Y(x0) |data) 

Bayesian predictive interval (dashed green)  
is the smallest interval containing β(100)% of 

 the predictive distribution of the criterion 

Minimal resolution: 
| | 

… 

do this for each quality 
criterion of interest 



  With the joint predictive distribution of criteria, MCDM is 
made simple ! 

  Ex: - separation: λ1> 0 min., resolution: λ2 > 1.2, Run : λ3 < 7 min. (one-sided) 
          - quality level : π > 0.8 

     -                                                      ? (Predictive) probability map that  
the three objectives are achieved 

X0: 

DS 



  The risk not to achieve the quality criteria is the 
complementary of the predictive probability to achieve 
these quality criteria 

  Risk(x0) = 1 -  

Risk = proportion of black points  
(rejected) 



  Mean predicted             Real 



  We show how it is straightforward to implement Design 
Space using Bayesian methods 
  With non-informative prior distributions 
  With informative prior distributions 

  Bayesian methodology allows finding the predictive 
distribution of responses 
 By MCMC simulations or using identified predictive distribution 
  Predict future responses (performance) given past experiments 
  Uncertainty is taken into account 
  …as well as dependencies between responses or quality criteria 

  Warning on the possible subjectivity of priors 
  They must be based on past knowledge 
  They should be carefully documented 
  Otherwise, better use non-informative prior distributions 



  Bayesian methods provide no help if responses and/or 
factors are not suited for modelling 
  Classical model checks (residuals, predicted vs. observed, etc.) 
  DIC – Adjusted R2 

  Known properties of responses (e.g. non linearity) 
  The simplest model is probably the better 
  Add a second layer to derive quality criteria if necessary 

  If there are reasons to think constraints apply on the 
responses or criteria. They can be included 
  using truncated distributions (e.g. Geweke, 1991) 
  via rejection sampling, if constraints are complex 

  If there are reasons to think (block of) responses can be 
assumed independent 
  Envisage to model them separately to make several simpler 

models 



  Thanks ! 
  Any question ? 


