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  Target : Understand and gain knowledge about a 
process/method to find a parametric region of reliable 
robustness for future performance of this process/
method -> assurance of quality 

  This region is the Design Space 

   We are also interested in the risk not achieving 

: domain 
: set of combinations of process parameters 
: responses obtained for the       condition 
: pre-defined set of acceptance limits 
: quality level (min. probability to achieve    ) 

     yield 64% 



  Application (Boulanger et al., NCB09, Boston) 

X 

Target 

Y 

Predictive 
Model f 

Specs 

λL1 <Y1 < λU1 

λL2 <Y2 < λU2 

DS 

Designed experiments 



  In applied DoE literature, it is frequent to see the term 
“Design space” 
  (as the design of experiment itself…) 
  as the zone where mean responses satisfy acceptance limits 

  But, mean responses  
  do not provide any clue about process reliability 
  fail to give any information on how the process will perform in the 

future 
  will certainly give disappointing and unexplained results for the 

future use of the process/method ! 
  ICH Q8 definition of DS is not met 

  Friends don’t let friends use “overlapping means” to calibrate an ICH Q8 
   design space, J. Peterson, NCB 09, Boston 



  Curse of dimensionality 
  Using classical (frequentist) multivariate models 

  Many responses (M) and many parameters (F) 
  Cost of experiments leads to light DoE (low N) 
  d.f. : ν = N-(F+M)+1  => possibly a negative value ! 

  (Predictive) Tolerance intervals 

  A (posterior) predictive approach must be envisaged 
  Gain information through prior knowledge 
  Takes into account model and data uncertainty 
  Easier interpretation of results 

“In the theory of statistical tolerance regions, as usually 
presented in frequentist terms, there are inherent 
difficulties of formulation, development and interpretation”  
Aitchison, Bayesian Tolerance Intervals, 1964 



  Bayesian analysis is well suited for 
  Standard multivariate regression, 
  Seemingly unrelated regression, non-linear, random effect, etc. 

  In simple cases, a predictive distribution of the responses can 
be identified and easily used 

  In complex cases, MCMC simulations from the likelihood and 
the parameter prior distributions are required 

  In less complex cases, sampling from identified parameters 
posterior distributions are used 

  Bayesian computations 
  Posterior: P(θ |data)= P(data|θ).P(θ)/P(data) P(data|θ)   . P(θ) 

         Likelihood . Prior 

  Predictive:  P(Y*|data) =   P(Y*|θ) . P(θ |data) dθ	




  For the M-responses model (Box & Tiao 1973, Press 2003, Peterson 2004), 

  using non-informative prior distribution of the parameters, 

  posterior distributions can be computed (Bayes theorem), 

OLS estimate of B 

ν = N-(F+M)+1 



  The predictive distribution of responses at      is identified 
as a multivariate Student distribution: 

  Now, what if informative priors are used ?  
  Conjugate prior distributions : 

Prior scale matrix 

Prior d.f. : 

Prior mean parameters 

Prior precision matrix of the parameters, 
(common for each response) 

is the estimated covariance matrix 



  Posterior distribution can be identified (Bayes theorem), 

  With some (tedious) computations, it is possible to find 
the predictive distribution of a new response at      :  



  This predictive distribution is of particular interest as 
  There is no need to simulate from the prior or even the 

posterior distribution of parameters 
  No convergence issue in MCMC 

  It gathers the uncertainty of data and model parameters for a 
new responses vector 

  Quantiles of the multivariate Student are β-expectation 
tolerance intervals (Guttman, 1969) 

  It is a generalisation of the multivariate Student distribution for 
non-informative prior distributions 



  Numerically get the posterior distribution using MCMC on prior 
distribution and likelihood (e.g. Winbugs)  

  Direct sampling from the identified posterior distribution of 
parameters 

  Direct sampling from the identified predictive distribution 

(Simulated data) 
Densities are similar  

whatever computation types ! 

Samples from the predictive distribution 

Sampling from id. posterior 
MCMC Sampling prior 
Sampling from id. predictive 

Sampling from id. posterior 
MCMC Sampling prior 
Sampling from id. predictive 
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  Chromatographic method 

Time (min.) 

Tuning parameters of the system (HPLC) 

Time (min.) 

‘Bad’ chromatograms are difficult 
to interpret and to use 

Peaks correspond to analytes 

Good chromatograms with identified 
compound behind each peak 

 further analyses are possible 

Complex problem  
addressed with DoE 



  We are interested to find the set of parameters settings 
that will give satisfactory results in the future use of this 
method (=DS). 
  ‘Satisfactory’ means ‘good’ chromatograms with well separated 

and nice-shaped peaks, and short run time, if possible 

 Potentially, many responses are modelled together 
  Each peak = 3 responses 
  Even more responses than experiments ! 

 However, clear correlation structure exists among these 
responses 

 Linear relationship is assumed between (transformed) responses 
and predictors  



  The use of Bayesian methods is of no help if responses 
are not carefully chosen 
  Ex: quality criterion of interest (minimal resolution) is modelled 

with (Bayesian) linear model 
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It is advised to model responses that show nice modelling 
properties (Massart et al. 1997, Snyder et al. 1997) 
  Even if they are not directly related to ‘quality’ 
  Quality criteria must be computable from the selected responses 

T0 
Dead time of the 
chromatographic 

system 

We assume M responses (=3*P peaks) are observed (NxM)         (NxF)(FxM) 

Y = g(B1,A1,E1,…,B3,A3,E3)  



  What we do: 

X 
Y 

Specs 

λL1 <O1 < λU1 

λL2 <O2 < λU2 

Predictive 
Model f 

Target 
A second “layer” is added, relating 

responses to quality criteria 

Responses 

Quality criteria O(x) = f(Y(x)) 

Designed experiments 

DS 



  Second layer 
 Combinations of responses 

Ex: 

 DS is the set of conditions, such that the predictive probability 
that Objectives will be simultaneously (jointly) within the 
acceptance limits is higher than  

| | 



E3 
A3 
B3 

E2 
A2 
B2 

E1 
A1 
B1 

M=9 responses are modelled 
with the Bayesian multivariate 

regression 

Is there a zone in my domain where I can guarantee  
a satisfactory chromatogram 

 in the future use of the chromatographic method ? 

A slice of the design is represented -  
DoE involves 2 factors : 

- pH (quadric) 
- Gradient time (quadratic) 
+ interactions 



  Model : set up of informative prior distributions 
  Assume no knowledge on the conditional distribution of B 

Matrix of 0 or    are typical choices A ‘flat’ diagonal (FxF) matrix 
(~0 precision) 



The desired correlation matrix is  
rescaled so it is comparable to  

the estimated scale matrix A*≡ {aij*} 

: degree of certainty of the prior  
 as low as possible (e.g. 3 or 4) 

= 1 
= 0.9 

Within peak structure 

Between peaks structure 

E3    A3    B3 E2    A2    B2 E1    A1    B1 



  Thus, responses are correlated 3 by 3 
  Why not one model for each peak (3 responses only) ? 

  For the sake of generality, it is enviable to have a model that can 
handle any correlation structure 

  Two different but structurally very similar compounds will have 
responses that will be correlated (e.g. enantiomers) 

  When independence can be assumed, it can be interesting to 
create several independent multivariate models with smaller 
covariance matrices 

In this example, peak 1 and peak 3  
are assumed correlated with  

prior correlation ρ3 



  Prior parameters are directly used in the predictive 
distribution of responses 

  Note that if Ν0 was set to 0 (N0≥0), The prior Inverse-Wishart 
distribution would have not been defined (                            ) 

  But the multivariate Student is still defined if ν +N0 is high enough ! 

Bayesian predictive intervals (transparent bands)  
are quantiles of the multivariate Student 



  Monte-Carlo simulations allow the (joint) predictive 
distribution of quality criteria to be propagated from the 
responses 

(B1,A1,E1,…,B3,A3,E3)  = g-1(Y(x0) |data) 

Bayesian predictive interval (dashed green)  
is the smallest interval containing β(100)% of 

 the predictive distribution of the criterion 

Minimal resolution: 
| | 

… 

do this for each quality 
criterion of interest 



  With the joint predictive distribution of criteria, MCDM is 
made simple ! 

  Ex: - separation: λ1> 0 min., resolution: λ2 > 1.2, Run : λ3 < 7 min. (one-sided) 
          - quality level : π > 0.8 

     -                                                      ? (Predictive) probability map that  
the three objectives are achieved 

X0: 

DS 



  The risk not to achieve the quality criteria is the 
complementary of the predictive probability to achieve 
these quality criteria 

  Risk(x0) = 1 -  

Risk = proportion of black points  
(rejected) 



  Mean predicted             Real 



  We show how it is straightforward to implement Design 
Space using Bayesian methods 
  With non-informative prior distributions 
  With informative prior distributions 

  Bayesian methodology allows finding the predictive 
distribution of responses 
 By MCMC simulations or using identified predictive distribution 
  Predict future responses (performance) given past experiments 
  Uncertainty is taken into account 
  …as well as dependencies between responses or quality criteria 

  Warning on the possible subjectivity of priors 
  They must be based on past knowledge 
  They should be carefully documented 
  Otherwise, better use non-informative prior distributions 



  Bayesian methods provide no help if responses and/or 
factors are not suited for modelling 
  Classical model checks (residuals, predicted vs. observed, etc.) 
  DIC – Adjusted R2 

  Known properties of responses (e.g. non linearity) 
  The simplest model is probably the better 
  Add a second layer to derive quality criteria if necessary 

  If there are reasons to think constraints apply on the 
responses or criteria. They can be included 
  using truncated distributions (e.g. Geweke, 1991) 
  via rejection sampling, if constraints are complex 

  If there are reasons to think (block of) responses can be 
assumed independent 
  Envisage to model them separately to make several simpler 

models 



  Thanks ! 
  Any question ? 


