

Use of Bayesian multivariate prediction models to optimize chromatographic methods

UCB Pharma Braine l'Alleud (Belgium) May 2010 Pierre Lebrun, ULg & Arlenda Bruno Boulanger, ULg & Arlenda Philippe Lambert, ULg & UCL Astrid Jullion, UCB Pharma

Overview

- ICH Q8 regulatory document
 - Design Space definition
 - Risk based approach
- Classical optimisation approach
 - Drawbacks
- Bayesian approach
 - Predictive distribution
 - Using informative prior distributions
- Example
 - Optimization of a chromatographic method

 - □ Predictive distribution under informative prior distribution of parameters
 - Monte-Carlo simulations for multi-criteria decision method
- Conclusions

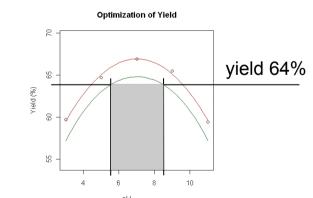
ICH Q8

- Target : Understand and gain knowledge about a process/method to find a parametric region of <u>reliable</u> <u>robustness</u> for <u>future performance</u> of this process/ method -> assurance of quality
- This region is the Design Space

 $DS = \{\mathbf{x}_0 \in \chi \mid E_{\theta, data} \left[P(\mathbf{Y}(\mathbf{x}_0) \in \mathbf{\Lambda}) \mid \mathbf{x}_0, \theta \right] \ge \pi \}$

 χ : domain

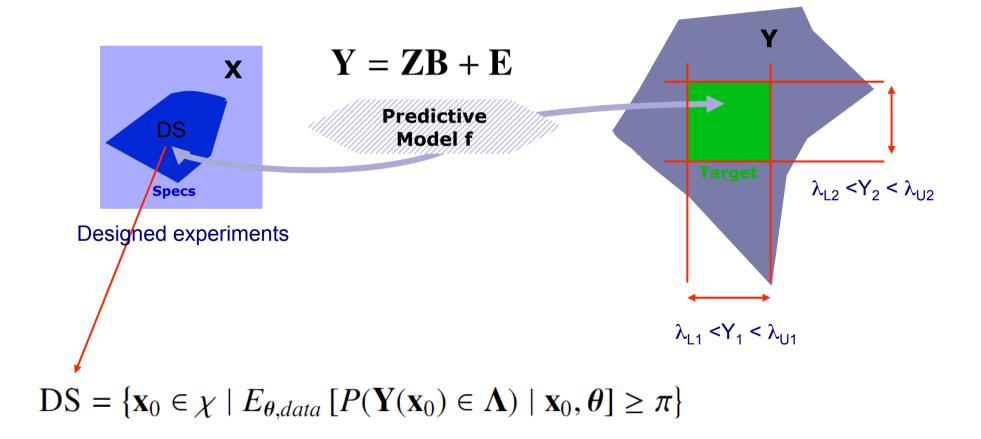
- \boldsymbol{x}_k : set of combinations of process parameters
- $oldsymbol{Y}(oldsymbol{x}_k)$: responses obtained for the $oldsymbol{x}_k$ condition
 - Λ : pre-defined set of acceptance limits
 - π_{min} : quality level (min. probability to achieve Λ)



We are also interested in the risk not achieving Λ

ICH Q8

■ Application (Boulanger et al., NCB09, Boston)



Classical (optimisation) approach

- In applied DoE literature, it is frequent to see the term "Design space"
 - \Box (as the design of experiment itself...)
 - \square as the zone where **mean responses** satisfy acceptance limits Λ
 - → But, mean responses
 - → do not provide any clue about process reliability
 - → fail to give any information on how the process will perform in the future
 - → will certainly give disappointing and unexplained results for the future use of the process/method !
 - → ICH Q8 definition of DS is not met

Friends don't let friends use "overlapping means" to calibrate an ICH Q8 design space, J. Peterson, NCB 09, Boston

Classical optimisation approach

Curse of dimensionality

- □ Using classical (frequentist) multivariate models
 - Many responses (M) and many parameters (F)
 - Cost of experiments leads to *light* DoE (low N)
 - d.f.: v = N-(F+M)+1 => possibly a negative value !
- (Predictive) Tolerance intervals

"In the theory of statistical tolerance regions, as usually presented in frequentist terms, there are inherent difficulties of formulation, development and interpretation" Aitchison, Bayesian Tolerance Intervals, 1964

- A (posterior) predictive approach must be envisaged
 - □ Gain information through prior knowledge
 - Takes into account model and data uncertainty
 - Easier interpretation of results

Bayesian Design Space

- Bayesian analysis is well suited for
 - Standard multivariate regression,
 - Seemingly unrelated regression, non-linear, random effect, etc.
 - In simple cases, a predictive distribution of the responses can be identified and easily used
 - In complex cases, MCMC simulations from the likelihood and the parameter prior distributions are required
 - In less complex cases, sampling from identified parameters posterior distributions are used

Bayesian computations

□ Predictive: $P(Y^*|data) = \mathbb{X} P(Y^*|\theta) \cdot P(\theta|data) d\theta$

Bayesian multivariate regression

■ For the *M*-responses model (Box & Tiao 1973, Press 2003, Peterson 2004),

$$\mathbf{Y} = \mathbf{Z}\mathbf{B} + \mathbf{E} \qquad \boldsymbol{\varepsilon}^{n'} \sim N_M(\mathbf{0}, \boldsymbol{\Sigma}), \quad n = 1, ..., N$$

- using non-informative prior distribution of the parameters, $p\left(\mathbf{B}, \boldsymbol{\Sigma}\right) \propto |\boldsymbol{\Sigma}|^{-\frac{1}{2}(M+1)}$
- posterior distributions can be computed (Bayes theorem),

$$\begin{split} \mathbf{\Delta} &= (\mathbf{Y} - \mathbf{Z}\hat{\mathbf{B}})'.(\mathbf{Y} - \mathbf{Z}\hat{\mathbf{B}}) \\ \mathbf{\Sigma} \mid \text{data} \sim W_M^{-1}(\mathbf{A}, \nu + M - 1), \quad \nu > 0 \\ \mathbf{B} \mid \mathbf{\Sigma}, \text{data} \sim N_{F \times M} \left(\hat{\mathbf{B}}, \mathbf{\Sigma}, (\mathbf{Z}'\mathbf{Z})^{-1} \right) \quad \nu = N - (F + M) + 1 \\ \text{OLS estimate of } \mathbf{B} \end{split}$$

Bayesian multivariate regression

The predictive distribution of responses at X₀ is identified as a multivariate Student distribution:

$$p(\mathbf{Y}(\mathbf{x}_{0}) \mid data) = \iint p(\mathbf{Y} \mid \mathbf{x}_{0}, \mathbf{B}, \mathbf{\Sigma}) \cdot p(\mathbf{B}, \mathbf{\Sigma} \mid data) d\mathbf{B}d\mathbf{\Sigma}$$

$$\mathbf{Y}(\mathbf{x}_{0}) \mid data \sim T_{M} \left(\hat{\mathbf{B}}\mathbf{z}_{0}, \left(1 + \mathbf{z}_{0}^{'}(\mathbf{Z}^{'}\mathbf{Z})^{-1}\mathbf{z}_{0} \right) \frac{\mathbf{A}}{\nu}, \nu \right)$$

$$\frac{\mathbf{A}}{\nu} \text{ is the estimated covariance matrix}$$

Now, what if informative priors are used ?
 Conjugate prior distributions :

Prior scale matrix

$$\Sigma \sim W_M^{-1}(\Omega, \nu_0) \rightarrow \text{Prior d.f. : } \nu_0 = N_0 - (M + F) + 1$$

$$\mathbf{B} \mid \mathbf{\Sigma} \sim N_{(F \times M)} (\mathbf{B}_0, \mathbf{\Sigma}, \mathbf{\Sigma}_0)$$

Prior precision matrix of the parameters, (common for each response)

Prior mean parameters

Bayesian multivariate regression - informative

Posterior distribution can be identified (Bayes theorem),

$$\mathbf{B} \mid \mathbf{\Sigma}, \text{data} \sim N_{F \times M} \left(\mathbf{M}_{\mathbf{B}\text{post}}, \mathbf{\Sigma}, \left(\mathbf{Z}' \mathbf{Z} + \mathbf{\Sigma}_{0}^{-1} \right)^{-1} \right)$$

$$\mathbf{M}_{\mathbf{B}\text{post}} = \left(\mathbf{Z}' \mathbf{Z} + \mathbf{\Sigma}_{0}^{-1} \right)^{-1} \left(\mathbf{Z}' \mathbf{Z} \hat{\mathbf{B}} + \mathbf{\Sigma}_{0}^{-1} \mathbf{B}_{0} \right)$$

$$\mathbf{\Sigma} \mid \text{data} \sim W^{-1} \left(\mathbf{\Omega} + \mathbf{A}^{*}, \nu + N_{0} \right)$$

$$\mathbf{A}^{*} = \mathbf{Y}' \mathbf{Y} + \mathbf{B}_{0}' \mathbf{\Sigma}_{0}^{-1} \mathbf{B}_{0} - \left(\mathbf{Z}' \mathbf{Z} \hat{\mathbf{B}} + \mathbf{\Sigma}_{0}^{-1} \mathbf{B}_{0} \right)' \left(\mathbf{Z}' \mathbf{Z} + \mathbf{\Sigma}_{0}^{-1} \right)^{-1} \left(\mathbf{Z}' \mathbf{Z} \hat{\mathbf{B}} + \mathbf{\Sigma}_{0}^{-1} \mathbf{B}_{0} \right)$$

With some (tedious) computations, it is possible to find the predictive distribution of a new response at x₀:

$$\mathbf{Y}(\mathbf{x}_{0})|data \sim T_{M}\left(\mathbf{M}_{\mathbf{B}\text{post}}\mathbf{z}_{0}, \left(1 + \mathbf{z}_{0}'(\mathbf{Z}'\mathbf{Z} + \boldsymbol{\Sigma}_{0}^{-1})^{-1}\mathbf{z}_{0}\right)\frac{\mathbf{\Omega} + \mathbf{A}^{*}}{\nu + N_{0}}, \nu + N_{0}\right)$$

Bayesian multivariate regression

- This predictive distribution is of particular interest as
 - There is no need to simulate from the prior or even the posterior distribution of parameters
 - No convergence issue in MCMC
 - It gathers the uncertainty of data and model parameters for a new responses vector
 - Quantiles of the multivariate Student are β-expectation tolerance intervals (Guttman, 1969)
 - It is a generalisation of the multivariate Student distribution for non-informative prior distributions

Verification – densities comparison

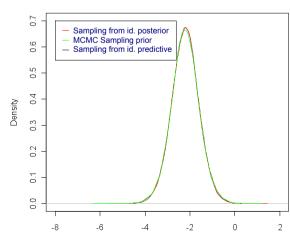
- Numerically get the posterior distribution using MCMC on prior distribution and likelihood (e.g. Winbugs)
- Direct sampling from the identified posterior distribution of parameters

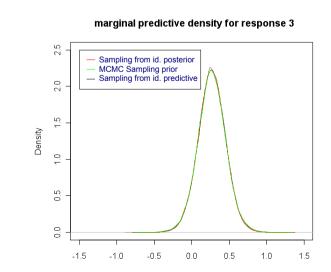
SAMPLE ($\mathbf{B}^{s}, \mathbf{\Sigma}^{s}$) from $p(\mathbf{B}, \mathbf{\Sigma} \mid data)$

Samples from the predictive distribution

Direct sampling from the identified predictive distribution

marginal predictive density for response 1





(Simulated data) Densities are similar whatever computation types !

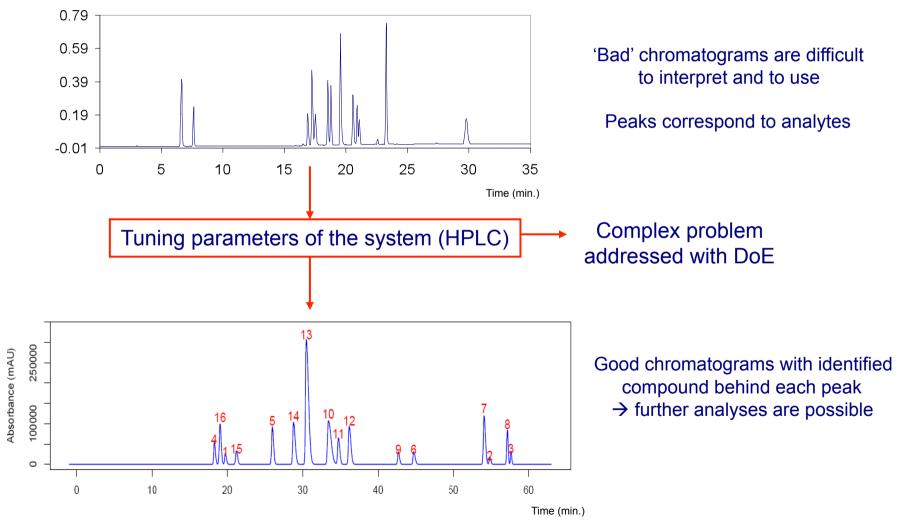
Overview

- ICH Q8 regulatory document
 - Design Space definition
 - Risk based approach
- Classical optimisation approach
 - Drawbacks
- Bayesian approach
 - Predictive distribution
 - Using informative prior distributions
- Example
 - Optimization of a chromatographic method

 - □ Predictive distribution under informative prior distribution of parameters
 - Monte-Carlo simulations for multi-criteria decision method
- Conclusions

Example

Chromatographic method

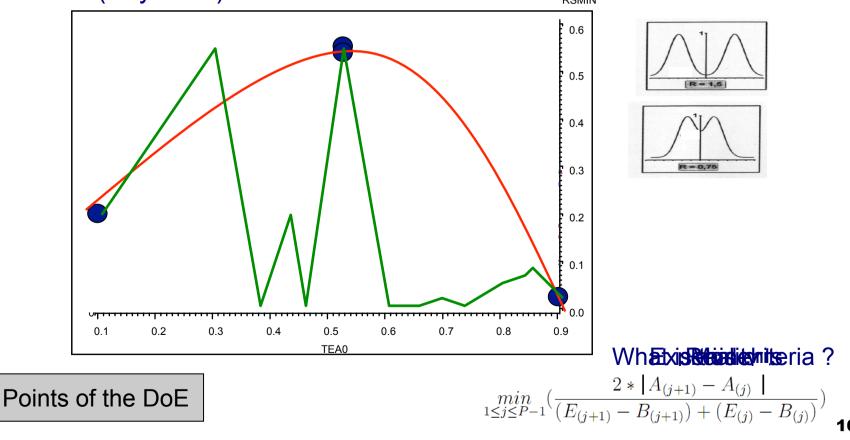


Example

- We are interested to find the set of parameters settings that will give satisfactory results in the future use of this method (=DS).
 - □ 'Satisfactory' means 'good' chromatograms with well separated and nice-shaped peaks, and short run time, if possible
 - Potentially, many responses are modelled together
 - → Each peak = 3 responses
 - → Even more responses than experiments !
 - However, clear correlation structure exists among these responses
 - Linear relationship is assumed between (transformed) responses and predictors

(Counter)-example – Current practice

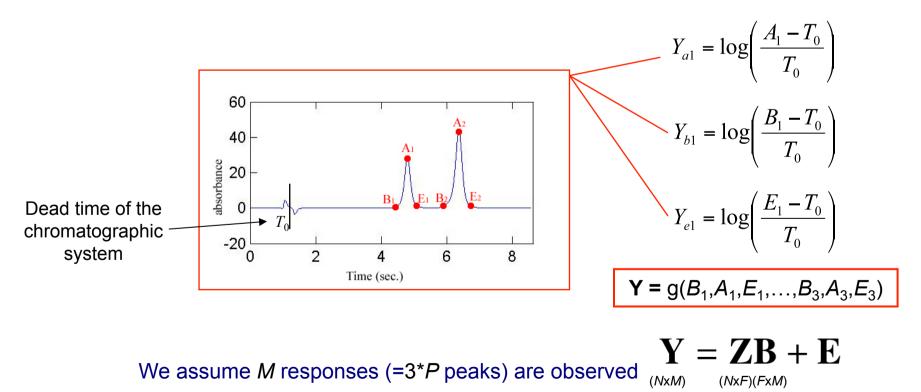
- The use of Bayesian methods is of no help if responses are not carefully chosen
 - Ex: quality criterion of interest (minimal resolution) is modelled with (Bayesian) linear model



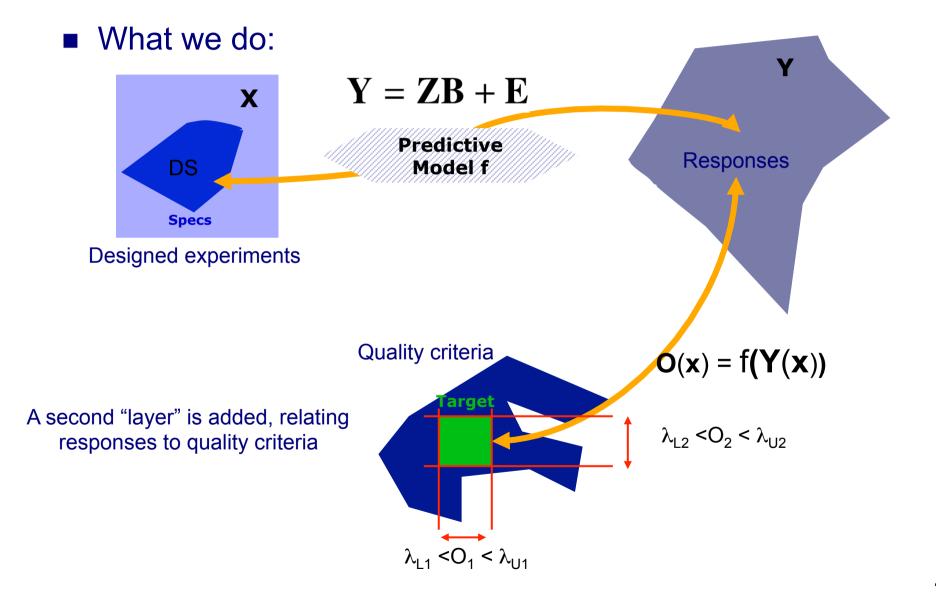
Example – Responses choice

It is advised to model responses that show nice modelling properties (Massart et al. 1997, Snyder et al. 1997)

- □ Even if they are not directly related to 'quality'
- □ Quality criteria must be computable from the selected responses



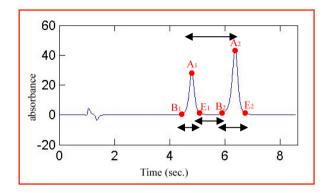
Example



Example – Quality criteria

Second layer
 Combinations of responses

Ex:

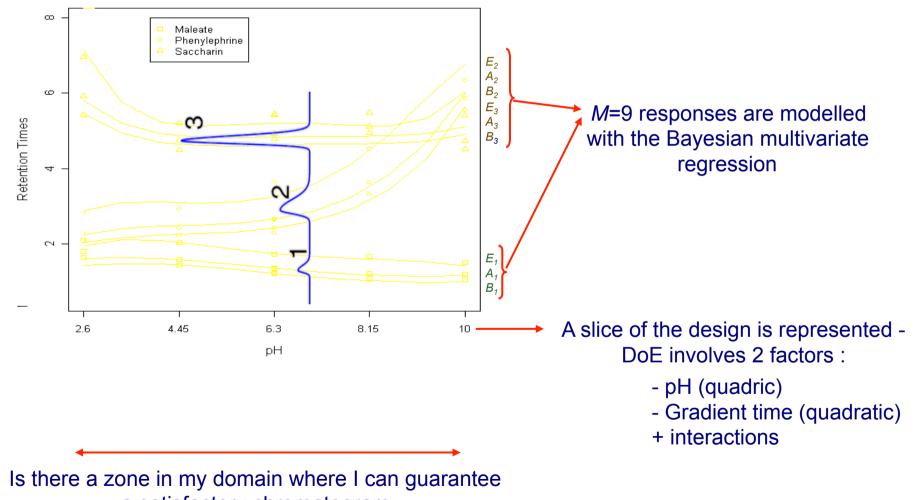


 $DS = \{\mathbf{x}_0 \in \chi \mid E_{\mathbf{B}, \Sigma \mid data} \left[P(\mathbf{O}(\mathbf{x}_0) \in \mathbf{\Lambda}) \mid \mathbf{x}_0, \mathbf{B}, \mathbf{\Sigma} \right] \ge \pi \}$

→ DS is the set of conditions, such that the predictive probability that **O**bjectives will be simultaneously (jointly) within the acceptance limits is higher than π_{min}

Example – 3 peaks

Multivariate Model and 95% Predictive Intervals



a satisfactory chromatogram in the future use of the chromatographic method ?

Prior distribution of B

Model : set up of informative prior distributions

 $\hfill\square$ Assume no knowledge on the conditional distribution of B

$$\mathbf{B} \mid \mathbf{\Sigma} \sim N_{(F \times M)} (\mathbf{B}_0, \mathbf{\Sigma}, \mathbf{\Sigma}_0)$$

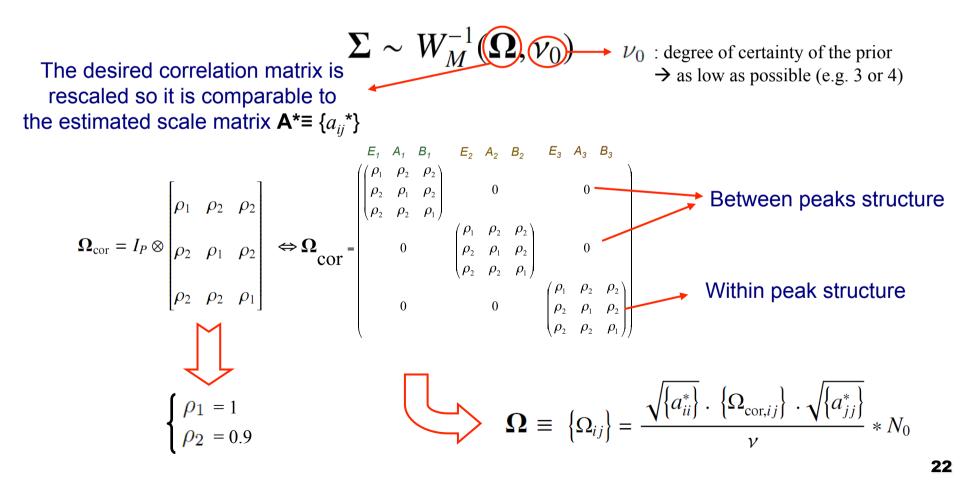
Matrix of 0 or $\hat{\mathbf{B}}$ are typical choices

A 'flat' diagonal (*F*x*F*) matrix (~**0** precision)

Prior distribution of Σ

 \Box We know some correlations exist between responses (in Σ)

- Correlations within a peak: strong; between peaks: none
- However we don't have clue about covariance or scale



Prior distribution of Σ

- Thus, responses are correlated 3 by 3
 - □ Why not one model for each peak (3 responses only)?
 - For the sake of generality, it is enviable to have a model that can handle any correlation structure
 - Two different but structurally very similar compounds will have responses that will be correlated (e.g. enantiomers)

$$\boldsymbol{\Omega}_{\text{cor}} = \begin{pmatrix} \rho_{1} & \rho_{2} & \rho_{2} \\ \rho_{2} & \rho_{1} & \rho_{2} \\ \rho_{2} & \rho_{2} & \rho_{1} \end{pmatrix} \qquad 0 \qquad \begin{pmatrix} \rho_{3} & \rho_{3} & \rho_{3} \\ \rho_{3} & \rho_{3} & \rho_{3} \\ \rho_{3} & \rho_{3} & \rho_{3} \end{pmatrix} \\ = & & & & & & & & & & & \\ \begin{pmatrix} \rho_{1} & \rho_{2} & \rho_{2} \\ \rho_{2} & \rho_{1} & \rho_{2} \\ \rho_{2} & \rho_{2} & \rho_{1} \end{pmatrix} \\ = & & & & & & & & & & & \\ \begin{pmatrix} \rho_{3} & \rho_{3} & \rho_{3} \\ \rho_{3} & \rho_{3} & \rho_{3} \\ \rho_{3} & \rho_{3} & \rho_{3} \end{pmatrix} \qquad 0 \qquad & & & & & & & & & \\ \begin{pmatrix} \rho_{1} & \rho_{2} & \rho_{2} \\ \rho_{2} & \rho_{1} & \rho_{2} \\ \rho_{2} & \rho_{1} & \rho_{2} \\ \rho_{2} & \rho_{2} & \rho_{1} \end{pmatrix} \end{pmatrix}$$

In this example, peak 1 and peak 3 are assumed correlated with prior correlation ρ_3

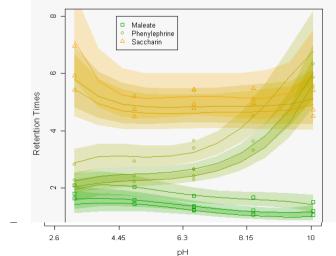
When independence can be assumed, it can be interesting to create several independent multivariate models with smaller covariance matrices

Example – Model

 Prior parameters are directly used in the predictive distribution of responses

$$\mathbf{Y}(\mathbf{x}_{0})|data \sim T_{M}\left(\mathbf{M}_{\mathbf{B}\text{post}}\mathbf{z}_{0}, \left(1 + \mathbf{z}_{0}'(\mathbf{Z}'\mathbf{Z} + \mathbf{\Sigma}_{0}^{-1})^{-1}\mathbf{z}_{0}\right)\frac{\mathbf{\Omega} + \mathbf{A}^{*}}{\nu + N_{0}}, \nu + N_{0}\right)$$

- □ Note that if N_0 was set to 0 ($N_0 \ge 0$), The prior Inverse-Wishart distribution would have not been defined ($\nu_0 = N_0 (M + F) + 1$)
- But the multivariate Student is still defined if $v + N_0$ is high enough !



Bayesian predictive intervals (transparent bands) are quantiles of the multivariate Student

Example – Derivation of Quality criteria

Monte-Carlo simulations allow the (joint) predictive distribution of quality criteria to be propagated from the responses
Multivariate Model and 95% Predictive Intervals

$$\mathbf{Y}(\mathbf{x}_{0})|data \sim T_{M}\left(\begin{array}{c} \dots \end{array} \right)$$

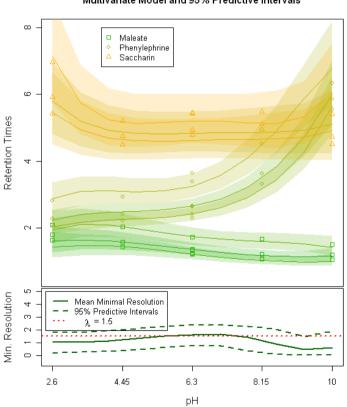
$$(B_{1},A_{1},E_{1},\dots,B_{3},A_{3},E_{3}) = g^{-1}(\mathbf{Y}(\mathbf{x}_{0}) | data)$$

$$\downarrow$$
Minimal resolution:

$$O_Z = \min_{1 \le j \le P-1} \left(\frac{2 * |A_{(j+1)} - A_{(j)}|}{(E_{(j+1)} - B_{(j+1)}) + (E_{(j)} - B_{(j)})} \right)$$

do this for each quality criterion of interest

Bayesian predictive interval (dashed green) is the smallest interval containing $\beta(100)\%$ of the predictive distribution of the criterion 25

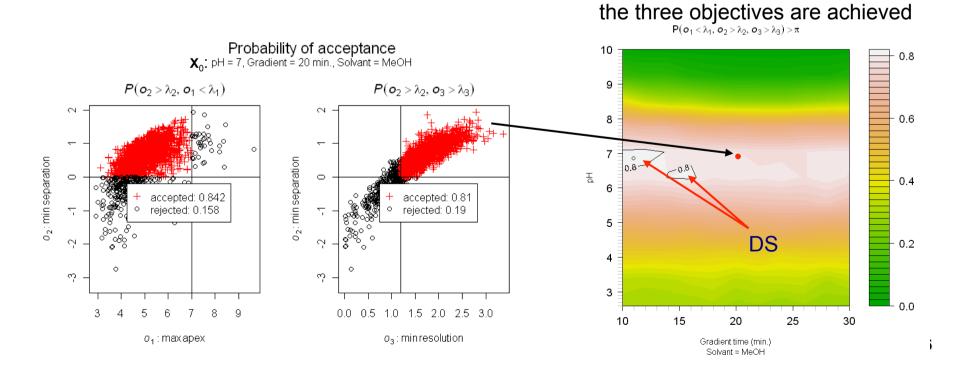


Example – Multi-criteria decision method

- With the joint predictive distribution of criteria, MCDM is made simple !
 - □ Ex: separation: λ_1 > 0 min., resolution: λ_2 > 1.2, Run : λ_3 < 7 min. (one-sided)

(Predictive) probability map that

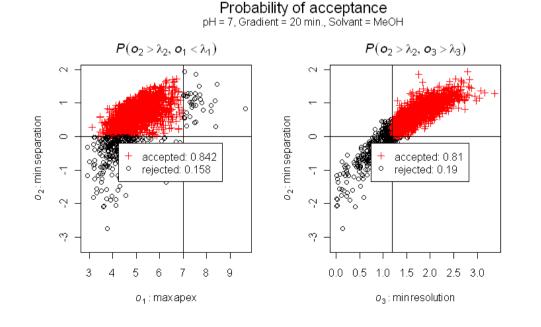
- quality level : $\pi > 0.8$
- $E_{\mathbf{B},\boldsymbol{\Sigma}|data} \left[P(\mathbf{O}(\mathbf{x}_0) \in \boldsymbol{\Lambda}) \mid \mathbf{x}_0, \mathbf{B}, \boldsymbol{\Sigma} \right]$?



Example – Multi-criteria decision method

The risk not to achieve the quality criteria is the complementary of the predictive probability to achieve these quality criteria

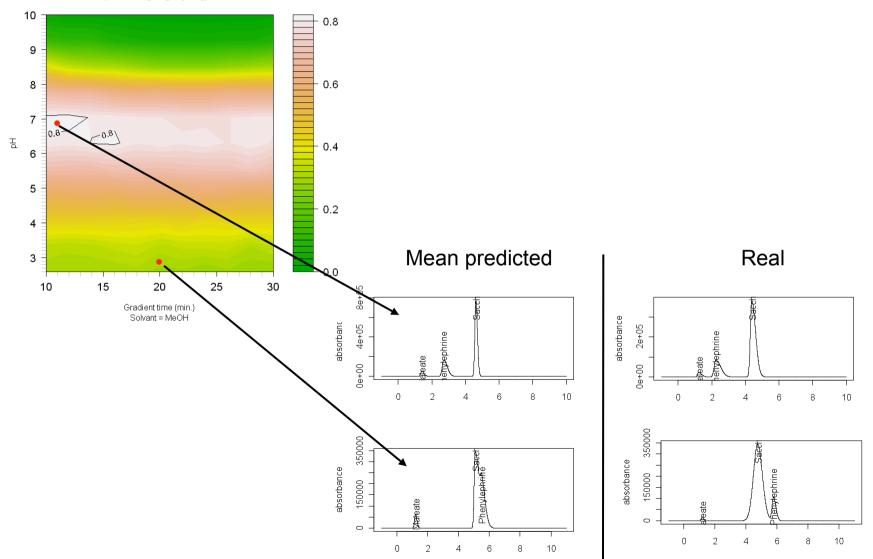
 $\square \operatorname{Risk}(\mathbf{x}_0) = 1 - E_{\mathbf{B}, \Sigma \mid data} \left[P(\mathbf{O}(\mathbf{x}_0) \in \mathbf{\Lambda}) \mid \mathbf{x}_0, \mathbf{B}, \mathbf{\Sigma} \right]$



Risk = proportion of black points (rejected)

Example – Validation experiments

 $P(o_1 < \lambda_1, o_2 > \lambda_2, o_3 > \lambda_3) > \pi$



Conclusions

- We show how it is straightforward to implement Design Space using Bayesian methods
 - □ With non-informative prior distributions
 - □ With informative prior distributions
- Bayesian methodology allows finding the predictive distribution of responses
 - \rightarrow By MCMC simulations or using identified predictive distribution
 - □ Predict future responses (performance) given past experiments
 - Uncertainty is taken into account
 - □ …as well as dependencies between responses or quality criteria
- Warning on the possible subjectivity of priors
 - □ They must be based on past knowledge
 - □ They should be carefully documented
 - Otherwise, better use non-informative prior distributions

Conclusions

- Bayesian methods provide no help if responses and/or factors are not suited for modelling
 - □ Classical model checks (residuals, predicted vs. observed, etc.)
 - □ DIC Adjusted R²
 - □ Known properties of responses (e.g. non linearity)
 - \rightarrow The simplest model is probably the better
 - Add a second layer to derive quality criteria if necessary
- If there are reasons to think constraints apply on the responses or criteria. They can be included
 using truncated distributions (e.g. Geweke, 1991)
 via rejection sampling, if constraints are complex
- If there are reasons to think (block of) responses can be assumed independent
 - Envisage to model them separately to make several simpler models

Thanks !

24

Any question ?