

Behavioral Testing of Antidepressant Compounds: An Analysis of Crossover Design for Correlated Binary Data

Ziv Shkedy, Geert Molenberghs and Mehreteab Aregay

Interuniversity Institute for Biostatistics and statistical Bioinformatics CenStat, Hasselt University Agoralaan 1, B3590 Diepenbeek, Belgium

&

Luc Bijnens*, Thomas Steckler**

Non-Clinical Biostatistics*, Discovery** J&JPRD, Janssen Pharmaceutica

Bayes2010, May 19-21, 2010

Overview

- Behavioral testing of anti depressant compound
- The DRL-72 experiment and Study design
- Analysis of response rate using random effects model three approaches
 - 1. Generalized linear mixed model for Binary data
 - 2. Hierarchical Bayesian model: Joint binomial-
 - Poisson model
 - 3. Hierarchical Bayesian model: Joint binomial-Poisson model with extra Poisson variability
- Application to the data
- Conclusions

Behavioral Testing of Antidepressant Compounds

- Rat are used as a model (surrogate) to test compounds for their activity
- The DRL 72 is a protocol that is commonly used for screening of compounds (Evenden et al. 1993)
- Animals are treated with several treatments using crossover designs

DRL-72 Experiment

Press the lever and wait less than 72sd

DRL-72 Experiment

- Rats have to press a lever in order to get a reward (food pellet)
- Only if they press the lever after a period of 72 sec they get a reward
- If they lose interest before the 72 sec period they do not get a reward
- Clinically active antidepressant drugs introduce a change in this behavior
- The success ratio (rewards over attempts) should increased with active drugs

Study design

- Cross-over design with 5 treatments, 3 periods and 4 blocks
- In total, 20 animals were randomized into a 3 periods sequences
- Five dose levels:

 A=0
 B=1.25
 C=2.5
 D=5
 E=10 (mg/kg)

animal

DEABC	BCDEA	EABCD	CDEAB
EABCD	DEABC	CDEAB	BCDEA
CDEAB	EABCD	BCDEA	DEABC
block			

3 versus 5 periods

- •1 dose per week
- •3 period fractional design

1.Cross over experiments are very efficient

2.Drop out after 5 weeks can be high

3 periods experiment

Each rat receive only three dose levels

Placebo	Dose A	Placebo	Dose B	Placebo Dose C
Day 1	Day 2			Possible effects:
✓ period				<u>1. Animal (random effect)</u> <u>2. Dose</u> 2. Devia d
				<u>3. Period</u> <u>4. Carry-over</u>

Descriptive Analysis (1)

 Mean number of responses decrease with dose level

Dose	N	Mean
Placebo	55	121.7
0	12	115.5
1.25	11	95.72
2.5	10	100.7
5	10	88.30
10	12	86.83

This pattern is the main motivation for the second modeling approach !!

Descriptive Analysis (2)

- Mean number of pellets by dose level
- Increasing trend with dose level

Dose	N	Mean
Placebo	55	6.60
0	12	7.91
1.25	11	10.09
2.5	10	9.40
5	10	9.20
10	12	12.6

Descriptive Analysis (3)

- The ratio pellets/ responses
 by dose group.
- Placebo versus test drug.

The ratio pellets/responses: success rate

Three Modeling Approaches

 Generalized linear mixed model (GLMM) for binary data:

Logistic regression with normally distributed random effects. Joint model for Binomial and Poisson random variables :

Hierarchical Bayesian model with subject-specific random effects for both Binomial and Poisson variables

Joint Poisson/Binomial with extra Poisson variation

Generalized Linear Mixed Model

• The number of pellets is the response variable, we assume

pellets ~ $B(\#responses,\pi)$

- Here, π is the probability that the animal will wait 72 seconds and receive a pellet
- The primary of interest: how π influenced by the dose level ?

Generalized Linear Mixed Model

$$y_{ij} | z_{ij} \sim B(z_{ij}, \pi_{ij})$$

$$logit(\pi_{ij}) = X\beta_{ij} + b_i$$

$$b_i \sim N(0, \sigma_b^2)$$

Animal-specific random intercept

Mean Structure

- Carryover effect is possible only in period 2 and 3
- Suppose that an animal was randomized to the sequence ABC, then:

PERIOD 1: $logit(\pi_{ij})=b_i + overall mean + dose_A$

PERIOD 2: $logit(\pi_{ii})=b_i + overall mean + dose_B + carryover_A + period_2$

PERIOD 3: $logit(\pi_{ii})=b_i + overall mean + dose_c + carryover_B + period_3$

Results

- The parameter estimate of the treatment variable from the GLMM is the log odds ratio
- The odds ratios has a very easy interpretation: success ratio of dose x versus success ratio of dose 0
- One value per dose summarizes the treatment effect

Results

DOSE	OR	CI
1.25 - 0	1.35	0.98 - 1.86
2.5 - 0	1.22	1.01 - 1.49
5.0 - 0	1.68	1.19 - 2.37
10.0 - 0	2.13	1.50 - 3.02

Why a Second Modeling Approach ?

GLMM

$$y_{ij} | z_{ij}, \pi_{ij} \sim Binomial(z_{ij}, \pi_{ij})$$

$$logit(\pi_{ij}) = X\beta + b_i$$

$$b_i \sim N(0, \sigma_b^2)$$

The number of responses is **fixed**

Binomial-Poisson

$$y_{ij} | z_{ij}, \pi_{ij} \sim Binomial(z_{ij}, \pi_{ij})$$

$$logit(\pi_{ij}) = X\beta + b_i$$

$$z_{ij} | \mu_{ij} \sim Poisson(\mu_{ij})$$

$$log(\mu_{ij}) = X\alpha + a_i$$

The number of responses is Poisson **random variable**

Parameters of Primary Interest

Modeling Association

- Recall that $logit(\pi_{ij}) = X\beta + b_i$ and $log(\mu_{ij}) = X\alpha + a_i$
- Hence, the association between $\mu_{\it ij}$ and $\,\pi_{\it ij}\,{\rm can}$ be modeled by

$$\begin{bmatrix} b_i \\ a_i \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, D\right)$$

• where

$$D = \begin{bmatrix} d_{bb} & d_{ab} \\ d_{ab} & d_{bb} \end{bmatrix} \implies \rho = \frac{d_{ab}}{\sqrt{d_{aa}}\sqrt{d_{bb}}}$$

Treatment Effects

- Suppose that an animal was randomized to the sequence ABC, then the linear predictors are given by:
- <u>PERIOD 2:</u>

Hierarchical Bayesian Model

• First Level of the model (the likelihood)

Model for the number of pellets	$y_{ij} \mid z_{ij}, \pi_{ij} \sim Binomial(z_{ij}, \pi_{ij})$ $logit(\pi_{ij}) = X\beta + b_i$
Model for the number of responses	$z_{ij} \mid \mu_{ij} \sim Poisson(\mu_{ij})$ $\log(\mu_{ij}) = X\alpha + a_i$

Second level of the model: prior model for random effects

$$\begin{bmatrix} b_i \\ a_i \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, D\right)$$

Hierarchical Bayesian Model

Prior for the "fixed" effects (treatment, period, carryulletover): we use non informative independent normal priors

$$\beta_i \sim N(0, \sigma_{\beta_i}^2)$$
 \leftarrow Priors for the fixed effects for number of pellets

$$\alpha_i \sim N(0, \sigma_{\alpha_i}^2)$$

Dr

- Priors for the fixed effects for number of responses
- Third level of the model (hyperprior for the covariance ulletmatrix D)

 $D^{-1} \sim W(R)$

Parameters of Primary Interest

Correlation between the random effects	ho
Treatment effects (binomial Variable): Log(OR)	$\beta_k - \beta_0$
Treatment effects (Poisson Variables): Log (RR)	$\alpha_k - \alpha_0$

Association Between Pellets and Responses

- Posterior mean for *ρ* is -0.4723 with 95% credible interval (-0.76, -0.07).
- Negative association between pellets and responses !!

Odds Ratios and Relative

- Number of responses • decreases with dose.
- Number of pellets ulletincreases with dose.

Posterior means and 95% credible

Odds Ratios and Relative

_ √

For the number of responses:

 $z_{ij} \mid \mu_{ij} \sim Poisson(\mu_{ij})$ $\log(\mu_{ij}) = X\alpha + a_i$ $E(z_{ij}) = \mu_{ij} \quad V(z_{ij}) = \mu_{ij}$

In many application the mean and the variance for the count variable (responses in our example) are not equal.

We would like to model the data taking into account a possible overdispersion problem.

$$y_{ij} | z_{ij}, \pi_{ij} \sim Binomial(z_{ij}, \pi_{ij})$$

$$logit(\pi_{ij}) = X\beta + b_i$$

$$z_{ij} | \mu_{ij} \sim Poisson(\eta_{ij} \mu_{ij})$$

$$log(\mu_{ij}) = X\alpha + a_i$$

overding ove

overdispersion parameter in order to take into account extra Poisson variability.

$$y_{ij} | z_{ij}, \pi_{ij} \sim Binomial(z_{ij}, \pi_{ij})$$

$$logit(\pi_{ij}) = X\beta + b_i$$

$$z_{ij} | \mu_{ij} \sim Poisson(\eta_{ij}\mu_{ij})$$

$$log(\mu_{ij}) = X\alpha + a_i$$

$$\eta_{ij} \sim gamma(\delta, \frac{1}{\delta})$$

$$\begin{bmatrix} b_i \\ a_i \end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, D\right)$$

 $\begin{aligned} z_{ij} \mid \mu_{ij} \sim Poisson(\eta_{ij} \mu_{ij}) \\ \log(\mu_{ij}) &= X\alpha + a_i \\ \eta_{ij} \sim gamma(\delta, \frac{1}{\delta}) \\ V(\eta_{ij}) &= \frac{1}{\delta} \end{aligned}$

For large value of δ the variance (of eta) is very small which implies that we do not have a problem of overdispersion since the mean is equal to 1.

Posterior mean for the correlation is negative: as dose increases the rats have less responses with more rewards (high success rate).

Posterior mean for the variance of the overdispersion parameter is 0.235.

 $\overline{\rho} = -0.3742$ $\overline{V}(\eta_{ij}) = 0.235$

Discussion

- Proposal for the statistical analysis of the DRL-72 protocol.
- Hierarchical GLMM and GEE (number of responses is fixed) and full Bayesian Binomial-Poisson model (number of responses in random variables)
- All models can be fitted using standard software:

SAS: NLMIXED, GENMOD (GEE), MCMC WINBUGS 1.4 (Hierchical GLMM and the Binomial-Poisson models)

Thank you !!!

Why a Second Modeling Approach ?

Why a Second Modeling Approach ?

FOR NUMBER OF RESPONSES