
Université 
Catholique 
de Louvain 

  

Institut de 
Statistique, Biostatistique et 
Sciences Actuarielles 

 
 
 
 
 
 

Bayesian Adaptive Sampling Time Design for 
Constrained PK Studies 

 
 
 
 

BAYES 2010 ς UCB ς Braine-LΩalleud 
 

May 20th 2010 

BAYES 2010 ς May 20th 2010 Jonathan Jaeger, Astrid Jullion, Bruno Boulanger 1 



Pediatric PK trial: objectives & constraints 

Phase I Single Dose study in young children: 
- 1 month to 4 years 

 
Focus is on accuracy of PK parameter estimates: 
- to be used for predictions 
- dose/regimen optimization 

 
A priori rather informative: 
- numerous data in adults (16y to 70y) 
- experience in allometric scaling. 

 
Ethics: 
- kids are not small adults, need to be robust against this potential issue 

- maximum 3 or 4 samples per kid. 
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¢ƻ Ǝƻ ǊƻǳƴŘ ƛƴ ŀ ŎƛǊŎƭŜΧ 

Accuracy on parameter estimates is linked on sampling time choice. 
 
D-optimality criteria is not independent of the parameters in nonlinear 
(hierarchical) model: 
- design is only locally optimal around preliminary estimates or guesses 
- if guesses about parameters are wrong, then the design is not optimal with respect to the true 

value of the parameter 

 
 
How to overcome these difficulties? 
A Bayesian adaptive framework based on D-optimality and prior information on parameters. 
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The BAST procedure 
Model and D-optimal design 
Bayesian hierarchical PK model 
Updates of priors 
Adaptive upper time search 

Goal: 
 
An Adaptive Sampling-Time Design trial is investigated to guide the sampling times in single-
dose and multiple-dose studies 
 

Main ideas: 
 
- Given (updated) a priori information on parameters, a D-optimal design for non-linear mixed 

effect model is derived at each interim. 
NB: not a Bayesian D-optimal design, too computer intensive 

- A Bayesian hierarchical PK model has been applied to update information on the parameters 
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The Design: 

 

1. 2/3/4 patients per cohort, maximum of 6 cohorts 

2. 3/4/5 sampling times obtain using the D-optimality criterion given prior information 

3. Bayesian Hierarchical PK model with informative prior from adults and allometric scaling 

4. Posteriors on parameters are used to find the D-optimal design for the next cohort. 

5. Posteriors are used as priors for the Bayesian model at the next interim 

6. Trial could stop when accuracy on parameters satisfactory, but 12 patients is the stopping 

rule. 
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Non-linear mixed effects model 
 

For ή ρȟȣȟὗ, 

ώ Ὢ—ȟ‎ȟ‚ ‐ᶼ„ „ Ὢ—ȟ‎ȟ‚  

 

The assumptions: 
- ‎ﬞͯ πȟЏ , 

- ‐ﬞͯ πȟὍ , 

- Independence between ‎ and ‐. 
 

The parameter to estimate is the vector Ᵽ╣ȟⱷ╣ȟⱭ╣
╣
, with: 

- — —ȟȣȟ—  the vector of fixed effects, 

- ‫ ‫ȟȣȟ‫  the variance of random effects, 

- „ „ ȟ„  for the structure of the variance of residual error. 

BAYES 2010 ς May 20th 2010 Jonathan Jaeger, Astrid Jullion, Bruno Boulanger 8 



BAST: How it works? 
Practical case : pediatric population PK study 

Conclusion 

The BAST procedure 
Model and D-optimal design 
Bayesian hierarchical PK model 
Updates of priors 
Adaptive upper time search 

Definition 
 

An experimental plan is defined by: 

ɧ
‚ ȣ ‚
ὔ ȣ ὔ

 

 

Fisher Information Matrix 

ὓ ɰȟɧ Ὁ
‬ὰɰȟώ

‬ɰ‬ɰ
 

 

The ╓-optimality criterion: 

ɮɧ ȿὓ ɰȟɧȿ  
 

Goal: find ɧ that maximize the criterion ɮ 
 

Software & functions: 
- software R, 

- functions PFIM & PFIMOPT (Sylvie Retout & France Mentré)  
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Model for the data: 
 

ÌÏÇώ ÌÏÇὅɰȟ‚ ‐ 

‐ͯ ﬞ πȟ†  
 

Model for the inter-individual 
variability : 
 

ɰﬞͯ ɰȟὙ  
 

Priors: 
 

†ͯ꞉ׂשὥȟὦ 
ɰͯ ﬞ ‘ȟɫ  

Ὑͯ בּר ”Џ ȟ” 
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Concentration for a one compartment model: 

ὅὠȟὯȟὯȟ‚
Ὀ

ὠ
ᶻ
Ὧ

Ὧ Ὧ
ᶻὩ ᶻ Ὡ ᶻ  

With: 

- Ὀ the oral dose, 

- Ὧ and Ὧ the absorption & elimination constant, 

- ὠ the volume of the compartment. 
 
Parameterization with ÌÏÇὠ, ÌÏÇὯ  and ÌÏÇὯ . 
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WinBUGS code 
 
model {  

   for( i  in 1:M){  

      for( j  in 1:N){  

         log.y [ i , j ] ~ d norm(log.C[ i , j ],tau)  

         log.C[i,j] < -  log(D /  

                           exp(psi[i,1])*  

                           exp(psi[i,2])/  

                           (exp(psi[i,2]) - exp(psi[ i ,3]))*  

                           (exp( - exp(psi [ i ,3])* xi [ i,j ]) -  

                            exp( - exp(psi[i ,2])*xi [ i,j ])))  

      }  

      psi [ i ,1:3] ~ dmnorm(m ean_psi [],R[,])  

   }  

   mean_psi [1:3] ~ dmnorm( mu[],prec[,])  

   R[1:3 ,1:3] ~ dwish( rho_ omega[,], rho )  

   tau ~ dgamma( a, b)  

}  
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Different sizes for cohorts 2, 3, 4 & 12 patients per cohort 

Different number of sampling times 3, 4 & 5 sampling times 

Prior values for the first cohort good guess or wrong guess 

 
 

Interest for the configuration: 
- 6 cohorts of 2 patients 
- 4 sampling times per subject 
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After the 1st cohort 
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After the 2nd cohort 
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After the 6th cohort 
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After 12 patients, fixed design & correct a priori 
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BAST vs. Fixed design & wrong guess : 
 

- reduction of MSE, 

- dispersion of relative bias less important, 
- reduction of bias for ÌÏÇὯ . 

 
 

BAST vs. Fixed design & good guess :  
 

- similar results, 

- MSE slightly lower, 

- relative bias similar, 
- reduction of the dispersion for ÌÏÇὯ  
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BAST vs. Fixed designs (3 sampling times) 
- BAST rapidly converges to the Fixed Design with correct a priori 
- After 12 patients, both BAST and Fixed Design with correct a priori provide similar quality. 
- BAST convergence is, within limits, robust against a prioris, correct or incorrect. 
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Influence of the number of patients per 
cohort 
 

Configuration: 

- 2, 3, 4 & 12 patients per cohort, 

- A total of 12 patients, 

- 4 sampling times. 
 

Results: 

- Reduction of the relative bias for ÌÏÇὯ , 

- Reduction of the dispersion of relative 
bias, 

- Limited gain to the passage of 3 to 2 
patients, 
- The less patients by cohort, the faster the 

adaptation. 
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Influence of the number of sampling 
time: 
 

Configuration: 
 

- 2 patients per cohort, 

- 6 cohorts, 

- 3, 4 & 5 sampling time. 
 

Results: 
 

- Reduction of the relative bias for ÌÏÇὯ , 

- Reduction of the dispersion of the bias, 

- Gain for the passage of 4 to 5 times. 
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