Bayesian Meta-analysis of Diagnostic Tests
Allowing for Imperfect Reference Standard

J Menten, M Boelaert, E Lesaffre

Institute of Tropical Medicine, L-Biostat KULeuven

10-May-2012
Overview

- Introduction
 - The clinical problem: meta-analysis of rapid tests for visceral leishmaniasis
 - Accuracy of diagnostic tests
 - Latent class analysis for diagnostic studies

- Meta-analysis of diagnostic studies
 - General principles
 - The bivariate model
 - Allowing for Imperfect Reference Standards

- Simulation study

- Application to VL data
Kala-Azar

Visceral leishmaniasis
(VL / Kala-azar / Black fever)
- neglected tropical disease
- protozoal disease, transmitted by sandflies
- occurs in poor rural areas of eastern Africa, southern Asia and Latin America
- symptoms: fever, enlarged spleen
- fatal if untreated (50,000 deaths/year)
- treatment is painful, toxic, and expensive
Classical diagnosis

Microscopical examination (+/- culture) of sample from

- **Lymph node**: Low sensitivity
- **Bone Marrow**: Sensitivity: 70-80% Painful Sterilization needed
- **Spleen**: Sensitivity 95% Expertise required Risk of major bleeding

Poorly adapted to the field conditions
Accurate and easy to use rapid diagnostic tests (RDT) are needed
Rapid Diagnostic Test for Leishmaniasis

RK39-based RDT

- Dipstick/strip test on fingerprick blood
- Dichotomous read-out
- Meta-analysis of diagnostic accuracy
- Phase III studies
 - Clinical suspect patients
 - Diagnosed in primary health care
- Problem: lack of perfect reference test
Introduction
Meta-Analysis of Diagnostic Studies
Simulation Study
Application to the Leishmania Rapid Test Data

Overview
Visceral Leishmaniasis
Accuracy of Diagnostic Tests
Latent Class Analysis

Meta-Analysis of RK39 based RDT

- Reference test
 - "Gold standard": aspiration of spleen
 - not 100% sensitive
 - dangerous to perform in low resource settings
 - may be impossible to perform on certain patients

- Reference standards used in publications:
 - varies between studies:
 - may not be perfect
 - some studies use Latent Class Analysis (LCA)

- Statistical model for meta-analysis should allow:
 - for imperfect reference standards
 - for primary studies that use LCA
Summary Measures of Accuracy of Diagnostic Tests

<table>
<thead>
<tr>
<th>Index test result</th>
<th>Reference standard result</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive (I+)</td>
<td>Positive (R+)</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Negative (R-)</td>
<td>b</td>
</tr>
<tr>
<td>Negative (I-)</td>
<td></td>
<td>c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d</td>
</tr>
</tbody>
</table>

- Assuming reference test is perfect:
 - all R+ are diseased (D+)
 - all R- are not diseased (D-):
 - sensitivity $S = P(I+ | D+)$ estimated by $a/(a+c)$
 - specificity $C = P(I- | D-)$ estimated by $d/(b+d)$

- If reference test is not perfect:
 - biased estimates of S and C
Bias due to Imperfect Reference Test

Estimated Specificity Index Test

Specificity Reference Test:
- 100%
- 75%
- 50%

Sensitivity Reference Test

Estimated Specificity Index Test
Bias due to Imperfect Reference Test

- Assuming conditional independence between Index and Reference test:
 - Conditional: on true disease status
 - If $C_R \downarrow$, $\hat{S} \downarrow$
 - If $S_R \downarrow$, $\hat{C} \downarrow$

- If conditional dependence:
 - S and C may be over- or under-estimated

- Possible solution: Latent Class Analysis
Latent Class Analysis for Diagnostic Tests

- Assume:
 - 2 tests, A and B
 - with unknown sensitivity S_A and S_B and specificity C_A and C_B
 - applied to sample of size N with disease prevalence π

- Results:

<table>
<thead>
<tr>
<th></th>
<th>A+</th>
<th>A-</th>
</tr>
</thead>
<tbody>
<tr>
<td>B+</td>
<td>n_{A+B+}</td>
<td>n_{A-B+}</td>
</tr>
<tr>
<td>B-</td>
<td>n_{A+B-}</td>
<td>n_{A-B-}</td>
</tr>
</tbody>
</table>

Counts follow a multinomial distribution:

$$n_{AjBk} \sim Mu(N, P(Aj, Bk))$$
Latent Class Analysis for Diagnostic Tests

- Assuming independence of test results given the disease status:

\[
P(A+, B+) = P(A+, B + | D+) \times P(D+) +
\]

\[
= P(A + | D+) \times P(B + | D+) \times P(D+) +
\]

\[
P(A + | D-) \times P(B + | D-) \times P(D-)
\]

\[
= \pi \times S_A \times S_B + (1 - \pi) \times (1 - C_A) \times (1 - C_B)
\]

- Similar equations for \(P(A-, B+), P(A+, B-),\) and \(P(A-, B-)\)
Solve for S_A, S_B, C_A, C_B, and π.

Problem:
- 3 independent equations
- 5 unknowns

Can be solved if:
- ≥ 3 tests
- applied to ≥ 2 populations with different prevalence
- using informative priors in a Bayesian setting
Meta-Analysis of Diagnostic Studies

General aspects for diagnostic study meta-analysis

- Joint modeling of S and C
- Heterogeneity between studies
- Possible correlation between S and C

Bivariate model (Reitsma, 2005)

- Hierarchical modeling of S and C
- Expanding the bivariate model:
 - Inclusion of primary publications that use LCA
 - Allow for imperfect reference standards
The Bivariate Model

- In each study i:
 - number of true positives $= y_{Si} \sim \text{Binomial}(n_{Si}, S_i)$, with n_{Si} the number of diseased subjects
 - number of true negatives $= y_{Ci} \sim \text{Binomial}(n_{Ci}, C_i)$, with n_{Ci} the number of non-diseased subjects

- At a higher level:
 - $\text{logit}(S_i) = \theta_{Si}$ and $\text{logit}(C_i) = \theta_{Ci}$ follow a bivariate normal distribution:
 $$
 \begin{pmatrix}
 \theta_{Si} \\
 \theta_{Ci}
 \end{pmatrix}
 \sim
 \mathcal{N}
 \left(
 \begin{pmatrix}
 \mu_S \\
 \mu_C
 \end{pmatrix},
 \Sigma
 \right)
 \text{ with } \Sigma =
 \begin{pmatrix}
 \sigma^2_S & \sigma_{SC} \\
 \sigma_{SC} & \sigma^2_C
 \end{pmatrix}
 $$
Adding Results from LCA

- Primary studies using LCA
- At study level, \(\hat{S}_i \) and \(\hat{C}_i \) with 95% CIs are reported:
 - we obtain: \(\text{logit}(\hat{S}_i) = \hat{\theta}_i \), \(\text{logit}(\hat{C}_i) = \hat{\theta}_i \), \(\sigma_{\hat{\theta}_i} \), \(\sigma_{\hat{\theta}_i} \)
- We assume:
 \[
 \hat{\theta}_i \sim N(\theta_i, \sigma^2_{\hat{\theta}_i})
 \]
 \[
 \hat{\theta}_i \sim N(\theta_i, \sigma^2_{\hat{\theta}_i})
 \]
- \(\theta_i \) and \(\theta_i \) follow the same bivariate normal distribution as before
Assumption: in each study R is a perfect reference test:
- $S_R = 1$ and $C_R = 1$
- often not true - especially not in field trials

Relax this assumption:
- model the 2x2 table of Index versus Reference Test for each study i
- estimate diagnostic accuracy of index (S_i, C_i) and reference test (S_{Ri}, C_{Ri})
- similar to Latent Class Analysis
Modeling of Index versus Reference Test

- Results of Index vs. Reference test for study i:

<table>
<thead>
<tr>
<th></th>
<th>R+</th>
<th>R-</th>
</tr>
</thead>
<tbody>
<tr>
<td>I+</td>
<td>y_{i11}</td>
<td>y_{i10}</td>
</tr>
<tr>
<td>I-</td>
<td>y_{i01}</td>
<td>y_{i00}</td>
</tr>
</tbody>
</table>

- Counts follow a multinomial distribution:

$$y_{ijk} \sim \text{Mu}(n_i, p_{ijk})$$

with n_i the sample size in study i
Modeling of Index versus Reference Test

- From LCA:

\[p_{ijk} = \pi_i[S_i^j (1 - S_i)^{1-j} S_{Ri}^k (1 - S_{Ri})^{1-k} + (-1)^{j-k} \text{cov}_{i|D=1}] + (1 - \pi_i)[C_i^{1-j} (1 - C_i)^j C_{Ri}^{1-k} (1 - S_{Ri})^k + (-1)^{j-k} \text{cov}_{i|D=0}] \]

- Model \(S_i \) and \(C_i \) sing the bivariate model as before
- Constraints needed for identifiability, possibilities:
 - Constraints on covariances (e.g., \(\text{cov}_{i|D=1} \equiv \text{cov}_{i|D=0} \equiv 0 \))
 - Modeling and/or informative priors for \(S_{Ri} \) and \(C_{Ri} \)
Diagnostic accuracy \((S_{Ri}, C_{Ri})\) of reference standard

- Reference standard classified into \(J\) types
- For each type of reference standard \(j\):
 - elicit estimates of \(S_{Rj}\) and \(C_{Rj}\) from experts
 - enter this information in the model as priors

- \(S_{Ri}, C_{Ri}\) either:
 - assumed constant across studies using the same reference standard (complete pooling cfr. Gelman & Hill)
 - unmodelled (no pooling)
 - modeled using a bivariate normal for \((\text{logit}(S_{Ri}), \text{logit}(C_{Ri}))\) (partial pooling)

- Identifiability of the model?
Setup of the Simulation Study

- **Index test:**
 - average S: 90%, σ_S: 0.5
 - average C: 90%, σ_C: 0.5

- **4 Types of reference tests:**
 - Low S_{R1} (85%, $\sigma_{S_{R1}} = 0.5$), Perfect C_{R1} (100%)
 - Perfect S_{R2} (100%), Low C_{R2} (85%, $\sigma_{C_{R2}} = 0.5$)
 - Moderate S_{R3} (92%, $\sigma_{S_{R3}} = 0.25$) and C_{R3} (92%, $\sigma_{C_{R3}} = 0.25$)
 - Latent class analysis

- **Sample size**
 - 5 studies/reference test (20 studies in total)
 - Sample sizes: 300, 200, 200, 100, 100
 - Prevalence: 50%
 - 100 simulated data-sets
Simulated Data

Reference test:
- Low S, Perfect C
- Perfect S, Low C
- Moderate S, Moderate C
- Latent Class Analysis
Analysis of the Simulation Study

- Bivariate normal model for the index test
- Models for the reference tests:
 - complete pooling across studies
 - no pooling across studies
 - hierarchical model (partial pooling)
- 4 Priors:

<table>
<thead>
<tr>
<th></th>
<th>Perfect</th>
<th>Correct</th>
<th>Vague</th>
<th>Incorrect</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>100</td>
<td>85 (80-90)</td>
<td>90 (50-100)</td>
<td>98 (95-100)</td>
</tr>
<tr>
<td>C_1</td>
<td>100</td>
<td>100 (98-100)</td>
<td>90 (50-100)</td>
<td>90 (85-95)</td>
</tr>
<tr>
<td>S_2</td>
<td>100</td>
<td>100 (98-100)</td>
<td>90 (50-100)</td>
<td>90 (85-95)</td>
</tr>
<tr>
<td>C_2</td>
<td>100</td>
<td>85 (80-90)</td>
<td>90 (50-100)</td>
<td>98 (95-100)</td>
</tr>
<tr>
<td>S_3</td>
<td>100</td>
<td>93 (88-98)</td>
<td>90 (50-100)</td>
<td>85 (80-90)</td>
</tr>
<tr>
<td>C_3</td>
<td>100</td>
<td>93 (88-98)</td>
<td>90 (50-100)</td>
<td>85 (80-90)</td>
</tr>
</tbody>
</table>

Supplied as normal priors for the logit S_{Ri} and C_{Ri}
Introduction
Meta-Analysis of Diagnostic Studies
Simulation Study
Application to the Leishmania Rapid Test Data

DIC

J Menten, M Boelaert, E Lesaffre

Bayesian Meta-analysis of Diagnostic Tests
Parameter Estimates: Means

- **mu[S] Estimate**
 - Complete pooling
 - No-pooling
 - Partial pooling

- **mu[C] Estimate**
 - Complete pooling
 - No-pooling
 - Partial pooling
Standard Error of Parameter Estimates

- mu[S] SE
- mu[C] SE

- Complete pooling
- No-pooling
- Partial pooling

J Menten, M Boelaert, E Lesaffre

Bayesian Meta-analysis of Diagnostic Tests
Coverage

Coverages of parameter estimates:

<table>
<thead>
<tr>
<th>Prior / Model</th>
<th>μ_S</th>
<th>μ_C</th>
<th>σ_S</th>
<th>σ_C</th>
<th>σ_{SC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect Reference Test</td>
<td>21</td>
<td>24</td>
<td>95</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>Correct: complete pooling</td>
<td>94</td>
<td>95</td>
<td>90</td>
<td>85</td>
<td>99</td>
</tr>
<tr>
<td>Correct: no pooling</td>
<td>96</td>
<td>94</td>
<td>87</td>
<td>84</td>
<td>100</td>
</tr>
<tr>
<td>Correct: partial pooling</td>
<td>92</td>
<td>95</td>
<td>83</td>
<td>89</td>
<td>100</td>
</tr>
<tr>
<td>Vague: complete pooling</td>
<td>96</td>
<td>96</td>
<td>89</td>
<td>83</td>
<td>100</td>
</tr>
<tr>
<td>Vague: no pooling</td>
<td>90</td>
<td>85</td>
<td>93</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Vague: partial pooling</td>
<td>92</td>
<td>92</td>
<td>89</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Incorrect: complete pooling</td>
<td>99</td>
<td>98</td>
<td>53</td>
<td>36</td>
<td>73</td>
</tr>
<tr>
<td>Incorrect: no pooling</td>
<td>99</td>
<td>94</td>
<td>42</td>
<td>22</td>
<td>48</td>
</tr>
<tr>
<td>Incorrect: partial pooling</td>
<td>98</td>
<td>96</td>
<td>46</td>
<td>30</td>
<td>66</td>
</tr>
</tbody>
</table>
Conclusion of simulation study

- Approach appears feasible and results in correct estimates
- Little difference between pooling/no-pooling/partial pooling
 - Use no-pooling as standard approach, unless model is non-identifiable
- Even vague priors result in identifiable models, which are an improvement from standard model
Leishmania Rapid Test Data

- **Available data:**
 - 18 studies with reference standard
 - 6 studies using LCA
 - 4 have data available for 2 reference tests

- **3 Reference standards:**
 - Spleen parasitology
 - Combined reference standards:
 - Bone marrow/lymph node parasitology and alternative diagnosis
 - Spleen parasitology and serological test

- **Main explanatory variable:** geographic region
 - Subsaharan Africa
 - Indian Subcontinent
 - Mediterranean and Latin-America
Leishmania Rapid Test Data

- Reference standard: spleen aspirate
- Combined reference standard:
- BM/LN aspirate and alternative diagnosis
- Spleen aspirate and serological test
- Latent Class Analysis

Graph showing sensitivity vs. specificity with different markers for each test type.
Link Function

Logit link

Complementary log-log link

Sensitivity vs. Specificity

J Menten, M Boelaert, E Lesaffre
Bayesian Meta-analysis of Diagnostic Tests
Imperfect Reference Test

- Priors obtained through expert opinion (preliminary)
 - Data from 6 experts
 - Average S/C + plausible range (95 out of 100 studies)
 - Bivariate normal model fitted to the (cloglog-transformed) expert data
 - Spleen parasitology
 - S_1: 93% (87-98); C_1: 98% (90-100)
 - Bone marrow/lymph node parasitology and alternative diagnosis
 - S_2: 84% (81-88); C_2: 96% (80-100)
 - Spleen parasitology and serological test
 - S_3: 98% (97-99); C_3: 94% (80-99)
Imperfect Reference Test

Analysis:

- Model choices:
 - Complete pooling: expert opinion used as prior for μ_{S_j} and μ_{C_j}
 - No pooling: expert opinion used as prior for the study specific S_{Ri} and C_{Ri}
 - Partial pooling: expert opinion used as priors for μ_{S_j}, μ_{C_j}, σ_{S_j}, and σ_{C_j}

- Priors:
 - Assume perfect reference standard
 - Priors from expert opinion
 - Vague priors
Model Fit

DIC:

<table>
<thead>
<tr>
<th>Prior:</th>
<th>Perfect RT</th>
<th>Expert Opinion</th>
<th>Vague</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Pooling</td>
<td>224.5</td>
<td>247.7</td>
<td>220.7</td>
</tr>
<tr>
<td>No Pooling</td>
<td>279.6</td>
<td>314.7</td>
<td></td>
</tr>
<tr>
<td>Partial Pooling</td>
<td>260.0</td>
<td>219.7</td>
<td></td>
</tr>
</tbody>
</table>

Model fit:

- Poor with priors obtained from expert opinion
- Better with vague prior
- Poor with no pooling model (identifiability ?)
Diagnostic Accuracy of Index Tests

Reference standards perfect

Expert opinion

Sensitivity

Specificity

Indian Subcontinent
East-Africa
Latin-America & Mediterranean

J Menten, M Boelaert, E Lesaffre
Bayesian Meta-analysis of Diagnostic Tests
Diagnostic Accuracy of Reference Test

Sensitivity and specificity (Partial pooling model):

<table>
<thead>
<tr>
<th></th>
<th>Supplied Mean (95% PI)</th>
<th>Estimated from model with Expert Prior Estimate (95% CI)</th>
<th>Vague Prior Estimate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spleen parasitology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>93.4 (87.2, 97.9)</td>
<td>94.1 (92.0, 95.9)</td>
<td>98.1 (92.9, 100)</td>
</tr>
<tr>
<td>C</td>
<td>98.3 (89.8, 99.9)</td>
<td>98.9 (97.7, 99.6)</td>
<td>99.9 (98.7, 100)</td>
</tr>
<tr>
<td>Bone marrow/lymph node parasitology and alternative diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>84.1 (81.4, 87.8)</td>
<td>86.6 (84.6, 88.5)</td>
<td>98.3 (95.5, 99.9)</td>
</tr>
<tr>
<td>C</td>
<td>96.3 (80.1, 100)</td>
<td>93.2 (86.9, 98.6)</td>
<td>91.4 (83.7, 99.1)</td>
</tr>
<tr>
<td>Spleen parasitology and serological test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>97.7 (97.0, 98.8)</td>
<td>98.0 (97.2, 98.6)</td>
<td>99.4 (97.5, 100)</td>
</tr>
<tr>
<td>C</td>
<td>94.0 (79.9, 99.3)</td>
<td>95.6 (92.6, 97.7)</td>
<td>99.6 (95.5, 100)</td>
</tr>
</tbody>
</table>
Conclusions and Further Work

Conclusions

- Correcting for imperfect reference tests results may result in important changes in estimates for S or C of the index test
- In the application, there appears to be some conflict between supplied prior and observed data

Further work

- Incorporate conditional dependencies between reference and index test
- More appropriate pooling of expert opinions
- Further assess influence of prior