Illustration of Bayesian Methodology as a Tool for Evidence Synthesis in Veterinary Medicine

Haifang Ni

Department of Methodology & Statistics Faculty of Veterinary Medicine

Utrecht University, The Netherlands

BAYES2014 11-13 June "In theory, theory and practice are the same. In practice, they are not."

- Albert Einstein

Clinical Research Question

Do the oral supplementation glucosamine sulphate (GS) and chondroitin sulphate (CS) have an effect on stiffness in veteran horses?

Higler et al. (2013) The effects of three-month oral supplementation with a nutraceutical and exercise on the locomotor pattern of veteran horses. Equine Veterinary Journal, doi 10.1111/evj.12182

- a Dutch clinical trial
- 24 veteran horses
- 12 in the treatment group, 12 in the control group
- 3 months treatment
- parameters of interest measured before and after treatment, e.g., stride length

- Conclusion from one trial reliable?
- Do we know more?
 - meta analysis?

- Not enough clinical trials done on the same research question
- Enough studies with lower levels of evidence, e.g., observational
- Enough studies from across animal species on approximately the same research question

"Is this needed for a Bayesian analysis?"

The Formula's

Bayes' Theorem

Suppose we have event A and event B, and the probability of event A $\neq 0$,

$$p(B|A) = rac{p(A|B) imes p(B)}{p(A)}$$

 $p(B|A) \propto p(A|B) \times p(B)$

Posterior probability B \propto Likelihood of Event A \times Initial probability B

Parameters of Interest

 $\pi(\theta|\mathbf{D}) \propto L(\mathbf{D}|\theta) \times \pi(\theta)$

8 / 18

 $L(D|\theta)$ refers to the information in data about θ .

Bayesian Updating

Non-informative prior: $\pi(\theta) = c$

Data 1: $\pi(\theta|D_1) \propto L(D_1|\theta) \times \pi(\theta)$ with $\pi(\theta) = c$

Data 2: $\pi(\theta|D_2) \propto L(D_2|\theta) \times \pi(\theta)$ with $\pi(\theta) = \pi(\theta|D_1)$

Data 3: $\pi(\theta|D_3) \propto L(D_3|\theta) \times \pi(\theta)$ with $\pi(\theta) = \pi(\theta|D_2)$

Data 4: ...

< □ > < 同 > < 回 > < 回 > < 回 >

3

The Formula's

Focus on the current study:

The power prior approach (Ibrahim, J.G. & Chen, M.-H., 2000)

The Power Prior(s)

For a single historical study:

$$\pi(heta|D_0, extbf{a}_0) \propto L(heta|D_0)^{ extbf{a}_0} imes \pi_0(heta)$$

For multiple historical studies:

$$\pi(\theta|D_{0k}, \mathbf{a}_{0k}) \propto \prod_{k=1}^{L_0} [L(\theta|D_{0k})^{\mathbf{a}_{0k}}] \times \pi_0(\theta)$$

 D_0 and D_{0k} denote the historical study; a_0 and a_{0k} denote the weight.

Parameter Estimates

Posterior \propto Likelihood of the current study imes the power prior(s)

Haifang Ni (Utrecht University) Bayesian approach applied in EBVM (slide 10 BAYES2014 11-13 June

10 / 18

- The Higler et al. (2013) clinical trial as the current study
- Treatment effect is of interest: change in stride length for horses
- Seven historical studies included, they vary in:
 - animal species: horses, dogs, human
 - study designs: such as
 - clinical trials, observational;
 - different treatment duration

- $0 \le a_0 \le 1$: $a_0 = 0$: data not included; $a_0 = 1$: data fully included
- based on degree of overlap between current and historical study characteristics
- allows the researcher to control the informativeness of the historical studies for the research question of the current study
- experts decide the weights
- expert elicitation
- sensitivity analyses

- Two weights were specified with respect to:
 - clinical relevance
 - methodological qualities
- Both experts get 100 points that can be assigned to the seven studies
- $\sum a_{0k} = ?$

The Weight *a*₀

ID	Clinical expert		Methodologist	
	Score	Motivation	Score	Motivation
1	10	n=35; dog;	2	control group not optimal;
		no negative control		lacked sufficient power
2	26	n=8; horse;	5	small sample size;
		small sample size		results unclear
3	38	n=20; horse;	15	treatment duration short;
		small control group		lacked a direct comparison
4	8	n=222; human;	30	properly executed
		subjective scoring		
5	8	n=572; human/veterans;	30	properly executed
		subjective scoring		
6	6	n=98; human; subjective	10	treatment duration short;
		scoring; only GS		study design not optimal
7	4	n=30; horses;	8	lacked a predetermined
		IM product is nonsense		non-inferiority margin
L		1		

Haifang Ni (Utrecht University) Bayesian approach applied in EBVM (slide 14 BAYES20

- more ethical
- more flexible
- more efficient
- more useful
- more transparant
- more objective

Spiegelhalter et al. (2003) Bayesian Approaches to Clinical Trials and Health-Care Evaluation. John Wiley & Sons, UK.

Some challenges as an example, there are definitely a lot more out there!

- Sample size from the historical studies:
 - should it be considered in the weighing process?
 - how to assign weights to studies with a large sample size (e.g., observational)?
- Should the current study be weighted by experts as well?

- Meta analysis in the prior?
- Should weights elicited by different criteria be combined? How?
- Alternative expert elicitation methods?

Transparancy!

Haifang Ni (Utrecht University) Bayesian approach applied in EBVM (slide 18 BAYES2014 11-13 June 18 / 18

э