Including historical data in the analysis of clinical trials using the modified power priors: theoretical overview and sampling algorithms

Joost van Rosmalen¹, David Dejardin^{2,3}, and Emmanuel Lesaffre^{1,2}

¹Department of Biostatistics, Erasmus MC, Rotterdam, the Netherlands

²I-BioStat, KU Leuven, Leuven, Belgium

³Biometrics, Roche Pharmaceutical Research and Early Development, Basel, Switzerland

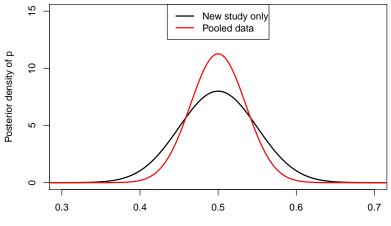
Bayes Pharma meeting 2014

Contents

- Introduction
- Theoretical overview
- Sampling algorithms
- Behaviour of modified power prior
- Discussion

- Including historical data in analysis of clinical studies is a tantalizing prospect.
- Advantages: improved precision and statistical power, fewer patients needed in new study.
- Common example: RCTs in which control group receives same treatment as in previous studies.
- Including historical data in analysis is controversial.

- Hypothetical example: probability of success of new surgical technique
- Current study: 50 successes out of 100 cases
- Previous study: 50 successes out of 100 cases
- Binomial model, uniform prior for probability



p (probability of success)

- Alternative to pooling: include historical data in the analysis, but assign lower weight to historical data.
- Ibrahim & Chen (Stat. Science, 2000) proposed power prior:

 $\pi^{CPP}(\beta|H,\theta) \propto L_H(\beta)^{\theta} p(\beta),$

with $p(\beta)$ the prior density of model parameters, H the historical data, and θ (with $0 \le \theta \le 1$) the relative weight of the historical data.

- Referred to as conditional power prior (CPP)
- Combining with likelihood of new data set D yields posterior:

$$p^{CPP}(\beta|\mathbf{D}, H, \theta) \propto L_{\mathbf{D}}(\beta)L_{H}(\beta)^{\theta}p(\beta).$$

- Chen & Ibrahim (Bayesian Analysis, 2006): specific choices of θ in CPP equivalent to meta-analysis.
- Gaussian model for current $(y_1^D, \dots, y_{n_D}^D)$ and hist. data $(y_1^H, \dots, y_{n_H}^H)$

$$\begin{array}{ll} y_1^D, \dots y_n^D \sim \mathcal{N}(\mu_D, \sigma_D^2) & \text{and} & y_1^H, \dots y_{n_H}^H \sim \mathcal{N}(\mu_H, \sigma_H^2) \\ \mu_D \sim \mathcal{N}(\mu, \tau^2) & \text{and} & \mu_H \sim \mathcal{N}(\mu, \tau^2) \\ & p(\mu) \propto 1 \end{array}$$

• Result: distribution of μ_H given $y_1^D, \dots y_n^D$ and $y_1^H, \dots y_{n_H}^H$ equal to CPP with:

$$\theta = \frac{1}{2\tau^2 n_H / \sigma_H^2 + 1}$$

• Results can be extended to linear regression, GLMs.

- Alternative approach: estimate θ using observed data.
- Result: adaptive pooling of historical and current data.
- Original power prior (Ibrahim & Chen, 2000):

 $\pi^{OPP}(\beta, \theta | D, H) \propto L_H(\beta)^{\theta} p(\beta) p(\theta),$

with $p(\theta)$ prior distribution of weight parameter.

- Duan et al. (Environmetrics, 2006): $\pi^{OPP}(\beta, \theta | D, H)$ does not satisfy likelihood principle.
- Multiplying $L_H(\beta)$ by arbitrary constant k yields

$$\pi^{OPP}(\beta, \theta | D, H) \propto \mathbf{k}^{\theta} L_{H}(\beta)^{\theta} p(\beta) p(\theta),$$

thus changing posterior distribution of θ .

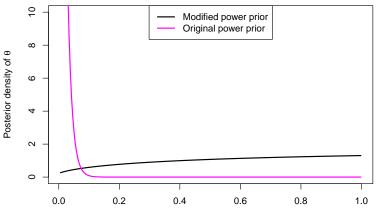
• Original power prior gives low values of θ in large data sets, even if $L_D(\beta) = L_H(\beta)$.

• Duan et al. (2006) proposed modified power prior (MPP):

$$\pi^{MPP}(\beta, \theta | H) \propto C(\theta) L_H(\beta)^{\theta} p(\beta) p(\theta),$$

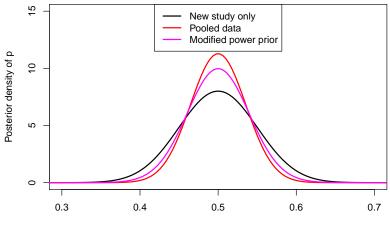
with

$$\mathcal{C}(\theta) = rac{1}{\int \mathcal{L}_{H}(eta)^{ heta} p(eta) \,\mathrm{d}eta}.$$



θ (weight of historical data)

Bayes Pharma meeting 2014 11 / 25



p (probability of success)

Sampling algorithms

- Using MPP, prior involves integral $\int L_H(\beta)^{\theta} p(\beta) d\beta$ in $C(\theta)$.
- In MCMC sampler, $C(\theta)$ must be available in every iteration: large computation time not acceptable.
- Possible approaches for simple models:
 - Analytical integration
 - Numerical integration
- MPP has only been applied in models with closed-form posterior.
- New algorithms for complex models:
 - Laplace approximation (talk of David)
 - Path sampling

Sampling algorithms: path sampling

- Friel and Pettitt (JRSS-B, 2008): calculation of marginal likelihood using power posteriors.
- Weight parameter used as auxiliary variable for calculating marginal likelihood (i.e. $\int L_H(\beta)^{\theta} p(\beta) d\beta$ with $\theta = 1$).
- Idea of algorithm: logarithm of $C(\theta)$ equals integrated log-likelihood:

$$\log\left(\int L_{H}(\beta)^{\theta} p(\beta) \,\mathrm{d}\theta\right) = \int_{\theta^{*}=0}^{\theta} \mathsf{E}_{L_{H}(\beta)^{\theta^{*}} p(\beta)} \left[\log(L_{H}(\beta))\right] \,\mathrm{d}\theta^{*},$$

with β distributed as $L_H(\beta)^{\theta^*} p(\beta)$.

Sampling algorithms: path sampling

Path sampling algorithm:

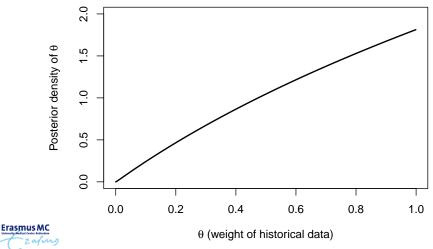
- Choose Δ_{θ} (step size for θ) and n_{iter} (iterations per step). Set $\theta = 0$.
- Repeat until $\theta = 1$:
 - Increase θ by Δ_{θ} .
 - Sample n_{iter} MCMC iterations from $L_H(\beta)^{\theta} p(\beta)$.
 - Calculate $\overline{\log(L_H(\beta))}$ as the average of $\log(L_H(\beta))$ using β s sampled for the current value of θ
- Calculate cumulative sum of $\overline{\log(L_H(\beta))}$, as a function of θ .
- $\int L_H(\beta)^{\theta} p(\beta) d\beta$ is proportional to exponential of the cumulative sum.

- $C(\theta)$ calculated for finite number of points in [0,1]
- For intermediate values: use linear interpolation of $log(C(\theta))$
- Few or no burn-in iterations required per value of θ .
- Numerical comparisons show that path sampling algorithm is accurate.
- For posterior results of MPP: use MCMC sampler and look up value of $C(\theta)$ in every iteration.

- If $L_H(\beta) = L_D(\beta)$ and $p(\theta) = 1$, posterior mode of θ is 1.
- But posterior CI of θ often very wide.
- Illustration with Gaussian model using results of Duan et al. (2006).

- Gaussian model: historical and current data $N(\mu, \sigma^2)$
- Beta(1,1) prior (i.e. uniform) for θ
- Jeffreys prior for μ and σ^2 , $\pi(\mu,\sigma^2)=(1/\sigma^2)^{3/2}$
- n = 100, $\bar{x} = 0$, $s^2 = 1$ for current data
- Three settings for historical data:

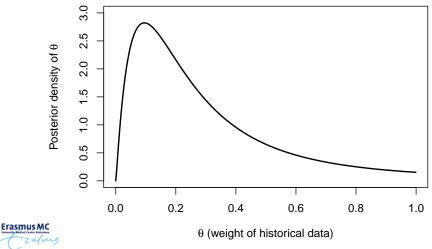
Posterior distribution of θ with equal historical and current data



Modified power priors: theoretical overview and sampling algorithms

Behaviour of modified power prior

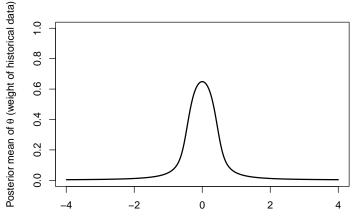
Posterior distribution of θ with $\bar{x} = 0$ and $\bar{x_H} = 0.5$



Modified power priors: theoretical overview and sampling algorithms

Behaviour of modified power prior

Posterior mean of θ as a function of $\bar{x_H}$



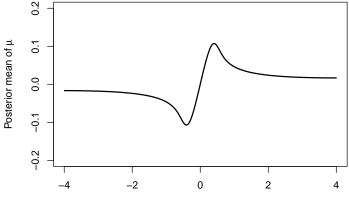
Sample average of historical data

Modified power priors: theoretical overview and sampling algorithms

Erasmus MC

Behaviour of modified power prior

Posterior mean of μ as a function of $\bar{x_H}$



Sample average of historical data

- Largest effect of historical data when $\bar{x} = 0$ and $\bar{x}_H \approx 0.41$, corresponding with significant difference in frequentist analysis (p-value two-sample t-test: 0.005).
- In Gaussian model, posterior mean of θ never becomes 1 using flat prior for θ .
- Scaling constant $\int_{\beta} L_H(\beta)^{\theta} p(\beta) d\beta$ is not finite with reference prior $f(\mu, \sigma^2) = \frac{1}{\sigma^2}$ (Duan et al. 2006)

Discussion

- Modified power prior is an interesting and versatile method.
- Advantages:
 - Applicable to any parametric Bayesian model
 - Normality assumption for parameters not needed.
 - Adaptive pooling happens automatically.
- Limitations:
 - Any discrepancy between historical and current data leads to downweighting.
 - Amount of discounting often considered too severe (Neelon & O'Malley, J Biomet Biostat 2010).
 - Unclear how prior of θ must be chosen.
 - Implementation requires more work than standard Bayesian analysis.

Discussion

- Topics for future research:
 - Definition of modified power prior with multiple historical data sets.
 - · Comparison of MPP with other methods, e.g. meta-analysis.
 - What to do if $\int_{\beta} L_{H}(\beta)^{\theta} p(\beta) d\beta$ is not finite for all $\theta \in (0, 1)$
 - Frequentist characteristics
- Theoretical understanding of MPP needs to be improved.

