

# Bayesian Markov models for the cost-effectiveness analysis of HPV vaccination

Katrin Haeussler

Department of Statistical Science

University College London

June 12th, 2014

#### 1 Aim of the research

- 2 Literature review
- 3 General introduction
  - Bayesian Markov models
- 4 Model assumptions
  - Reference population and follow-up
  - Cervical screening and HPV vaccination
  - Model structure
  - The process of sexual mixing
    - Herd immunity
  - Distributional assumptions and sources of prior information
  - Transition probabilities
- 6 Preliminary results
  - Convergence and autocorrelation
  - Cost-effectiveness analysis

#### 1 Aim of the research

- 3 General introduction
  - Bayesian Markov models
- 4 Model assumptions
  - Reference population and follow-up
  - Cervical screening and HPV vaccination
  - Model structure
  - The process of sexual mixing
    - Herd immunity
  - Distributional assumptions and sources of prior information
  - Transition probabilities
- 6 Preliminary results
  - Convergence and autocorrelation
  - Cost-effectiveness analysis

- Aim of the research
- Literature review
- 3 General introduction
  - Bayesian Markov models
- 4 Model assumptions
  - Reference population and follow-up
  - Cervical screening and HPV vaccination
  - Model structure
  - The process of sexual mixing
    - Herd immunity
  - Distributional assumptions and sources of prior information
  - Transition probabilities
- 6 Preliminary results
  - Convergence and autocorrelation
  - Cost-effectiveness analysis

- 1 Aim of the research
- Literature review
- 3 General introduction
  - Bayesian Markov models
- 4 Model assumptions
  - Reference population and follow-up
  - Cervical screening and HPV vaccination
  - Model structure
  - The process of sexual mixing
    - · Herd immunity
  - Distributional assumptions and sources of prior information
  - Transition probabilities
- 6 Preliminary results
  - Convergence and autocorrelation
  - Cost-effectiveness analysis

- Aim of the research
- Literature review
- 3 General introduction
  - Bayesian Markov models
- 4 Model assumptions
  - Reference population and follow-up
  - Cervical screening and HPV vaccination
  - Model structure
  - The process of sexual mixing
    - · Herd immunity
  - Distributional assumptions and sources of prior information
  - Transition probabilities
- 6 Preliminary results
  - Convergence and autocorrelation
  - Cost-effectiveness analysis



# Identifying the most cost-effective vaccination strategy against human papillomavirus (HPV)

- Incorporating the effects of herd immunity into the Bayesian Markov model
- 2 Including boys in a quadrivalent HPV vaccination scheme
- 3 Considering a great variety of HPV-induced diseases







# Identifying the most cost-effective vaccination strategy against human papillomavirus (HPV)

- Incorporating the effects of herd immunity into the Bayesian Markov model
- Including boys in a quadrivalent HPV vaccination scheme
- 3 Considering a great variety of HPV-induced diseases







# Identifying the most cost-effective vaccination strategy against human papillomavirus (HPV)

- Incorporating the effects of herd immunity into the Bayesian Markov model
- 2 Including boys in a quadrivalent HPV vaccination scheme
- 3 Considering a great variety of HPV-induced diseases



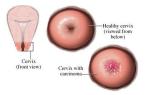


# Human papillomavirus (HPV)

- Mainly sexually transmitted virus
- · Infects both mucous membrane and skin
- In rare cases transmission through:
  - Shared towels
  - Public saunas
  - Digital-genital contact
- Around 40 identified genotypes, including 13 high-risk types
  - HPV 16 and 18: 79.1% of all cervical cancers
  - HPV 6 and 11: anogenital warts and recurrent respiratory papillomatosis (RRP)
  - HPV 1 and 2: benign skin warts
- Contributory cause of anal, vaginal, vulvar, penile and head/neck cancers

# Human papillomavirus (HPV)

- Mainly sexually transmitted virus
- Infects both mucous membrane and skin
- In rare cases transmission through:
  - Shared towels
  - Public saunas
  - Digital-genital contact
- Around 40 identified genotypes, including 13 high-risk types
  - HPV 16 and 18: 79.1% of all cervical cancers
  - HPV 6 and 11: anogenital warts and recurrent respiratory papillomatosis (RRP)
  - HPV 1 and 2: benign skin warts
- Contributory cause of anal, vaginal, vulvar, penile and head/neck cancers


#### **HPV** prevalence

- 20.7% in females
- 17.4% in males

# HPV-induced disease burden in the UK

#### **HPV** prevalence

- 20.7% in females
- 17.4% in males



#### **Cervical cancer**

- Yearly 2,890 new cervical cancer diagnoses
- Cervical cancer 11th most frequent cancer in females

# HPV-induced disease burden in the UK

#### **HPV** prevalence

- 20.7% in females
- 17.4% in males

# Cervix (front view)

#### **Cervical cancer**

- Yearly 2,890 new cervical cancer diagnoses
- Cervical cancer 11th most frequent cancer in females

#### **Genital warts prevalence**

- 4.7% in females
- 2.2% in males





# Economic impact

# **UC**

### Yearly costs borne by the NHS

- £17 million for genital warts treatment
- £157 million for cervical cancer treatment



# Economic impact

# **UC**

### Yearly costs borne by the NHS

- £17 million for genital warts treatment
- £157 million for cervical cancer treatment



#### European public health insurance systems

- National Health Service (NHS) in the UK
- Servizio Sanitario Nazionale (SSN) in Italy
- Couverture Maladie Universelle (CMU) in France

# Economic impact

### Yearly costs borne by the NHS

- £17 million for genital warts treatment
- £157 million for cervical cancer treatment



#### European public health insurance systems

- National Health Service (NHS) in the UK
- Servizio Sanitario Nazionale (SSN) in Italy
- Couverture Maladie Universelle (CMU) in France

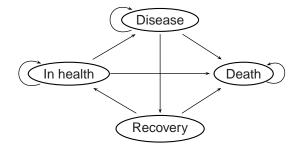
#### **Country-specific information**

- Data on costs and utilities specific for Italy
- · Cost-effectiveness analysis in an Italian context

- ≜UC L
- 5 databases searched with variety of search word combinations
- Altogether 116 publications reviewed and summarized
- Hybrid models for HPV vaccination
  - Simulate the process of sexual mixing
  - 2 Calculate age-and gender-specific HPV prevalence by means of
    - Difference equations
    - ODEs
  - Integrate those probabilities into natural disease history models afterwards

- 5 databases searched with variety of search word combinations
- Altogether 116 publications reviewed and summarized
- Hybrid models for HPV vaccination
  - Simulate the process of sexual mixing
  - 2 Calculate age-and gender-specific HPV prevalence by means of
    - Difference equations
    - ODEs
  - Integrate those probabilities into natural disease history models afterwards

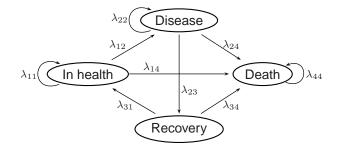
- 5 databases searched with variety of search word combinations
- Altogether 116 publications reviewed and summarized
- Hybrid models for HPV vaccination
  - Simulate the process of sexual mixing
  - 2 Calculate age-and gender-specific HPV prevalence by means of
    - Difference equations
    - ODEs
  - Integrate those probabilities into natural disease history models afterwards


- 5 databases searched with variety of search word combinations
- Altogether 116 publications reviewed and summarized
- Hybrid models for HPV vaccination
  - Simulate the process of sexual mixing
  - 2 Calculate age-and gender-specific HPV prevalence by means of
    - Difference equations
    - ODEs
  - Integrate those probabilities into natural disease history models afterwards

- 5 databases searched with variety of search word combinations
- Altogether 116 publications reviewed and summarized
- Hybrid models for HPV vaccination
  - Simulate the process of sexual mixing
  - 2 Calculate age-and gender-specific HPV prevalence by means of
    - Difference equations
    - ODEs
  - Integrate those probabilities into natural disease history models afterwards

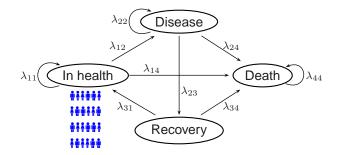
To the best of our knowledge, our methodology of including dynamic interactions between individuals directly into a static Bayesian Markov model is unique in the field of HPV transmission and disease progression modelling.

≜UCL


1. Define a structure

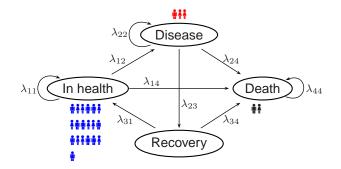


Exhaustive and mutually exclusive health states


**UCL** 

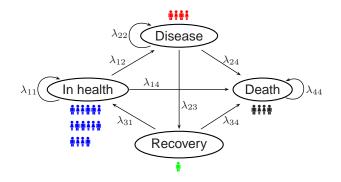
2. Estimate the transition probabilities



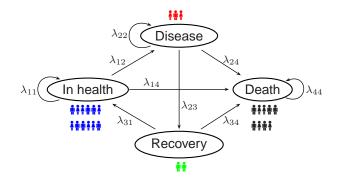

- Transition probabilities  $\lambda$  are functions of  $\theta$
- Assigning flat and informative distributions to parameters θ

3. Run the simulation: t = 0

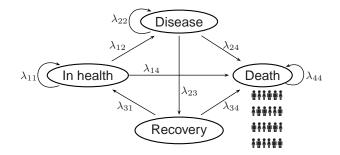



- Each health state is assigned a value of utility
- Ranging between 0 (death) and 1 (perfect health)

3. Run the simulation: t = 1




Markov cycle length of 1 year


3. Run the simulation: t = 2



3. Run the simulation: t = 3



3. Run the simulation: t = T



Health economic analysis of multi cohort vaccination strategy



#### **Reference population and follow-up**

- 24 cohorts of females and males aged 12-35 years
- Follow-up period of 55 years
- Population dynamics: Entering of healthy 12 year old individuals during first 10 years of observation



#### **Reference population and follow-up**

- 24 cohorts of females and males aged 12-35 years
- Follow-up period of 55 years
- Population dynamics: Entering of healthy 12 year old individuals during first 10 years of observation



#### **Reference population and follow-up**

- 24 cohorts of females and males aged 12-35 years
- Follow-up period of 55 years
- Population dynamics: Entering of healthy 12 year old individuals during first 10 years of observation

# 

#### Interventions *i*

- 1 Screening-only: Screening in females, no intervention in males
- *Female-only vaccination*: Screening and vaccination in 12 year old females, no intervention in males
- Oniversal vaccination: Screening and vaccination in 12 year old females, vaccination in 12 year old males
  - Sensitivity analyses to male vaccination age
- Catch-up vaccination: Screening and vaccination in 12 year old females with a catch-up at 15 years and no intervention for males

- Sensitivity analysis to catch-up coverage rate



# 

#### Interventions *i*

- 1 Screening-only: Screening in females, no intervention in males
- *Female-only vaccination*: Screening and vaccination in 12 year old females, no intervention in males
- Oniversal vaccination: Screening and vaccination in 12 year old females, vaccination in 12 year old males
  - Sensitivity analyses to male vaccination age
- Catch-up vaccination: Screening and vaccination in 12 year old females with a catch-up at 15 years and no intervention for males

- Sensitivity analysis to catch-up coverage rate



# 

#### Interventions *i*

- 1 Screening-only: Screening in females, no intervention in males
- *Female-only vaccination*: Screening and vaccination in 12 year old females, no intervention in males
- Our Content of the second s
  - Sensitivity analyses to male vaccination age
- Catch-up vaccination: Screening and vaccination in 12 year old females with a catch-up at 15 years and no intervention for males
  - Sensitivity analysis to catch-up coverage rate



# 

#### Interventions *i*

- 1 Screening-only: Screening in females, no intervention in males
- *Female-only vaccination*: Screening and vaccination in 12 year old females, no intervention in males
- Oniversal vaccination: Screening and vaccination in 12 year old females, vaccination in 12 year old males
  - Sensitivity analyses to male vaccination age
- 4 Catch-up vaccination: Screening and vaccination in 12 year old females with a catch-up at 15 years and no intervention for males
  - Sensitivity analysis to catch-up coverage rate



### Model assumptions

# 

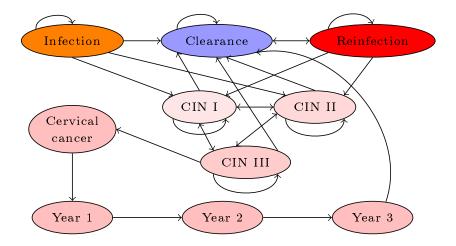
#### Interventions *i*

- 1 Screening-only: Screening in females, no intervention in males
- *Female-only vaccination*: Screening and vaccination in 12 year old females, no intervention in males
- Oniversal vaccination: Screening and vaccination in 12 year old females, vaccination in 12 year old males
  - Sensitivity analyses to male vaccination age
- Catch-up vaccination: Screening and vaccination in 12 year old females with a catch-up at 15 years and no intervention for males


- Sensitivity analysis to catch-up coverage rate



### Female model compartment


≜UCL

#### $S_f = 36$ health states



### **Cervical cancer**









- Most important aspect of our research
- Transforms the Bayesian MM into a hybrid model
- Accounting for herd immunity
  - unvaccinated individuals are indirectly protected
  - females and males benefit from male HPV vaccination by
    - decrease in prevalence of HPV and induced diseases
    - 2 reduction of HPV transmission between the sexes
  - vaccine benefits are no longer underestimated in CE-analyses





- Most important aspect of our research
- Transforms the Bayesian MM into a hybrid model
- Accounting for herd immunity
  - unvaccinated individuals are indirectly protected
  - females and males benefit from male HPV vaccination by
    - decrease in prevalence of HPV and induced diseases
    - 2 reduction of HPV transmission between the sexes
  - vaccine benefits are no longer underestimated in CE-analyses





- Most important aspect of our research
- Transforms the Bayesian MM into a hybrid model
- Accounting for herd immunity
  - unvaccinated individuals are indirectly protected
  - females and males benefit from male HPV vaccination by
    - decrease in prevalence of HPV and induced diseases
    - 2 reduction of HPV transmission between the sexes
  - vaccine benefits are no longer underestimated in CE-analyses





- Most important aspect of our research
- Transforms the Bayesian MM into a hybrid model
- Accounting for herd immunity
  - unvaccinated individuals are indirectly protected
  - females and males benefit from male HPV vaccination by
    - decrease in prevalence of HPV and induced diseases
    - 2 reduction of HPV transmission between the sexes
  - vaccine benefits are no longer underestimated in CE-analyses





- Most important aspect of our research
- Transforms the Bayesian MM into a hybrid model
- Accounting for herd immunity
  - unvaccinated individuals are indirectly protected
  - females and males benefit from male HPV vaccination by
    - decrease in prevalence of HPV and induced diseases
    - 2 reduction of HPV transmission between the sexes
  - vaccine benefits are no longer underestimated in CE-analyses

## HPV transmission probabilities $\epsilon$

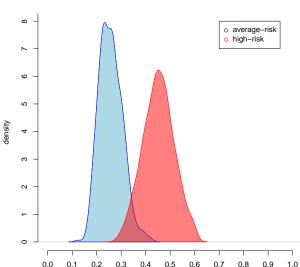
#### Average-risk sexual activity

- 80% of the population
- 2-10 lifetime sex partners



# HPV transmission probabilities $\epsilon$

#### Average-risk sexual activity


- 80% of the population
- 2-10 lifetime sex partners



#### High-risk sexual activity

- 20% of the population
- 11 or more lifetime sex partners
- Promiscuity correlates with
  - smoking
  - a low education level
  - early first sexual intercourse before the age of 18

# Distributions of transmission probabilities



ε

Distributions of HPV transmission probabilities  $\boldsymbol{\epsilon}$ 



#### Sexual partnership matrix for female (average-risk group)

| Age   | 12  | 15  | 20  | 25  | 30  | 35  | 40  | 45  | 50  | 55  | 60  | 65  |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|       | -14 | -19 | -24 | -29 | -34 | -39 | -44 | -49 | -54 | -59 | -64 | -80 |
| 12-19 | 1%  | 26% | 58% | 15% | 1%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  |
| 20-24 | 0%  | 0%  | 36% | 49% | 12% | 2%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  |
|       |     |     |     |     |     |     |     |     |     |     |     |     |
| 65-80 | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 14% | 86% |



Sexual partnership matrix for female (average-risk group)

|       |     | •   |     |     |     |     | · · |     | 0   | 0   | • • |     |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Age   | 12  | 15  | 20  | 25  | 30  | 35  | 40  | 45  | 50  | 55  | 60  | 65  |
|       | -14 | -19 | -24 | -29 | -34 | -39 | -44 | -49 | -54 | -59 | -64 | -80 |
| 12-19 | 1%  | 26% | 58% | 15% | 1%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  |
| 20-24 | 0%  | 0%  | 36% | 49% | 12% | 2%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  |
|       |     |     |     |     |     |     |     |     |     |     |     |     |
| 65-80 | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 14% | 86% |

Annual max, average and mean partner acquisition rate for females

|       |      | Females |      |      | Males |      |
|-------|------|---------|------|------|-------|------|
| Age   | Min  | Mean    | Max  | Min  | Mean  | Мах  |
| 12-19 | 0.74 | 1.26    | 1.78 | 0.90 | 1.92  | 2.94 |
| 20-24 | 0.54 | 0.96    | 1.38 | 0.68 | 1.38  | 2.09 |
|       |      |         |      |      |       |      |
| 60-   | 0.05 | 0.10    | 0.15 | 0.04 | 0.11  | 0.18 |



Sexual partnership matrix for female (average-risk group)

|       |     | •   |     |     |     |     | •   |     | 0   | 0   | • • |     |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Age   | 12  | 15  | 20  | 25  | 30  | 35  | 40  | 45  | 50  | 55  | 60  | 65  |
|       | -14 | -19 | -24 | -29 | -34 | -39 | -44 | -49 | -54 | -59 | -64 | -80 |
| 12-19 | 1%  | 26% | 58% | 15% | 1%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  |
| 20-24 | 0%  | 0%  | 36% | 49% | 12% | 2%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  |
|       |     |     |     |     |     |     |     |     |     |     |     |     |
| 65-80 | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 14% | 86% |

Annual max, average and mean partner acquisition rate for females

|       |      | Females |      |      | Males |      |
|-------|------|---------|------|------|-------|------|
| Age   | Min  | Mean    | Max  | Min  | Mean  | Max  |
| 12-19 | 0.74 | 1.26    | 1.78 | 0.90 | 1.92  | 2.94 |
| 20-24 | 0.54 | 0.96    | 1.38 | 0.68 | 1.38  | 2.09 |
|       |      |         |      |      |       |      |
| 60-   | 0.05 | 0.10    | 0.15 | 0.04 | 0.11  | 0.18 |

Consider a 20 year old female in the average-risk group



Sexual partnership matrix for female (average-risk group)

| Age   | 12  | 15  | 20  | 25  | 30  | 35  | 40  | 45  | 50  | 55  | 60  | 65  |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|       | -14 | -19 | -24 | -29 | -34 | -39 | -44 | -49 | -54 | -59 | -64 | -80 |
| 12-19 | 1%  | 26% | 58% | 15% | 1%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  |
| 20-24 | 0%  | 0%  | 36% | 49% | 12% | 2%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  |
|       |     |     |     |     |     |     |     |     |     |     |     |     |
| 65-80 | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 14% | 86% |

Annual max, average and mean partner acquisition rate for females

|       |      | Females |      |      | Males |      |
|-------|------|---------|------|------|-------|------|
| Age   | Min  | Mean    | Max  | Min  | Mean  | Max  |
| 12-19 | 0.74 | 1.26    | 1.78 | 0.90 | 1.92  | 2.94 |
| 20-24 | 0.54 | 0.96    | 1.38 | 0.68 | 1.38  | 2.09 |
|       |      |         |      |      |       |      |
| 60-   | 0.05 | 0.10    | 0.15 | 0.04 | 0.11  | 0.18 |

 Consider a 20 year old female in the average-risk group and assume the maximum partner acquisition rate



Sexual partnership matrix for female (average-risk group)

| Age   | 12  | 15  | 20  | 25  | 30  | 35  | 40  | 45  | 50  | 55  | 60  | 65  |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|       | -14 | -19 | -24 | -29 | -34 | -39 | -44 | -49 | -54 | -59 | -64 | -80 |
| 12-19 | 1%  | 26% | 58% | 15% | 1%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  |
| 20-24 | 0%  | 0%  | 36% | 49% | 12% | 2%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  |
|       |     |     |     |     |     |     |     |     |     |     |     |     |
| 65-80 | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 14% | 86% |

Annual max, average and mean partner acquisition rate for females

|       |      | Females |      | Males |      |      |  |  |  |
|-------|------|---------|------|-------|------|------|--|--|--|
| Age   | Min  | Mean    | Max  | Min   | Mean | Max  |  |  |  |
| 12-19 | 0.74 | 1.26    | 1.78 | 0.90  | 1.92 | 2.94 |  |  |  |
| 20-24 | 0.54 | 0.96    | 1.38 | 0.68  | 1.38 | 2.09 |  |  |  |
|       |      |         |      |       |      |      |  |  |  |
| 60-   | 0.05 | 0.10    | 0.15 | 0.04  | 0.11 | 0.18 |  |  |  |

- Consider a 20 year old female in the average-risk group and assume the maximum partner acquisition rate
- Then the sexual mixing matrices are defined as

 $-m_{g,s,s',a,a'} = 36\% \times 1.38 = 0.4968$ , for a' = 20-24;



Sexual partnership matrix for female (average-risk group)

| Age   | 12  | 15  | 20  | 25  | 30  | 35  | 40  | 45  | 50  | 55  | 60  | 65  |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|       | -14 | -19 | -24 | -29 | -34 | -39 | -44 | -49 | -54 | -59 | -64 | -80 |
| 12-19 | 1%  | 26% | 58% | 15% | 1%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  |
| 20-24 | 0%  | 0%  | 36% | 49% | 12% | 2%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  |
|       |     |     |     |     |     |     |     |     |     |     |     |     |
| 65-80 | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 14% | 86% |

Annual max, average and mean partner acquisition rate for females

|       |      | Females |      | Males |      |      |  |  |  |
|-------|------|---------|------|-------|------|------|--|--|--|
| Age   | Min  | Mean    | Max  | Min   | Mean | Max  |  |  |  |
| 12-19 | 0.74 | 1.26    | 1.78 | 0.90  | 1.92 | 2.94 |  |  |  |
| 20-24 | 0.54 | 0.96    | 1.38 | 0.68  | 1.38 | 2.09 |  |  |  |
|       |      |         |      |       |      |      |  |  |  |
| 60-   | 0.05 | 0.10    | 0.15 | 0.04  | 0.11 | 0.18 |  |  |  |

- Consider a 20 year old female in the average-risk group and assume the maximum partner acquisition rate
- Then the sexual mixing matrices are defined as

$$-m_{q,s,s',a,a'} = 36\% \times 1.38 = 0.4968$$
, for  $a' = 20-24$ ;

$$-m_{g,s,s',a,a'} = 49\% \times 1.38 = 0.6762$$
, for  $a' = 25-29$ ;



Sexual partnership matrix for female (average-risk group)

| Age   | 12  | 15  | 20  | 25  | 30  | 35  | 40  | 45  | 50  | 55  | 60  | 65  |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|       | -14 | -19 | -24 | -29 | -34 | -39 | -44 | -49 | -54 | -59 | -64 | -80 |
| 12-19 | 1%  | 26% | 58% | 15% | 1%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  |
| 20-24 | 0%  | 0%  | 36% | 49% | 12% | 2%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  |
|       |     |     |     |     |     |     |     |     |     |     |     |     |
| 65-80 | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 14% | 86% |

Annual max, average and mean partner acquisition rate for females

|       |      | Females |      |      |      |      |  |
|-------|------|---------|------|------|------|------|--|
| Age   | Min  | Mean    | Max  | Min  | Mean | Max  |  |
| 12-19 | 0.74 | 1.26    | 1.78 | 0.90 | 1.92 | 2.94 |  |
| 20-24 | 0.54 | 0.96    | 1.38 | 0.68 | 1.38 | 2.09 |  |
|       |      |         |      |      |      |      |  |
| 60-   | 0.05 | 0.10    | 0.15 | 0.04 | 0.11 | 0.18 |  |

- Consider a 20 year old female in the average-risk group and assume the maximum partner acquisition rate
- Then the sexual mixing matrices are defined as

$$-m_{g,s,s',a,a'} = 36\% \times 1.38 = 0.4968$$
, for  $a' = 20-24$ ;

$$-m_{g,s,s',a,a'} = 49\% \times 1.38 = 0.6762$$
, for  $a' = 25-29$ ;

 $-m_{g,s,s',a,a'} = 12\% \times 1.38 = 0.1656$ , for a' = 30-34;



Sexual partnership matrix for female (average-risk group)

| Age   | 12  | 15  | 20  | 25  | 30  | 35  | 40  | 45  | 50  | 55  | 60  | 65  |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|       | -14 | -19 | -24 | -29 | -34 | -39 | -44 | -49 | -54 | -59 | -64 | -80 |
| 12-19 | 1%  | 26% | 58% | 15% | 1%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  |
| 20-24 | 0%  | 0%  | 36% | 49% | 12% | 2%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  |
|       |     |     |     |     |     |     |     |     |     |     |     |     |
| 65-80 | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 14% | 86% |

Annual max, average and mean partner acquisition rate for females

|       |      | Females |      |      |      |      |  |
|-------|------|---------|------|------|------|------|--|
| Age   | Min  | Mean    | Max  | Min  | Mean | Max  |  |
| 12-19 | 0.74 | 1.26    | 1.78 | 0.90 | 1.92 | 2.94 |  |
| 20-24 | 0.54 | 0.96    | 1.38 | 0.68 | 1.38 | 2.09 |  |
|       |      |         |      |      |      |      |  |
| 60-   | 0.05 | 0.10    | 0.15 | 0.04 | 0.11 | 0.18 |  |

- Consider a 20 year old female in the average-risk group and assume the maximum partner acquisition rate
- Then the sexual mixing matrices are defined as

$$-m_{g,s,s',a,a'} = 36\% \times 1.38 = 0.4968$$
, for  $a' = 20-24$ ;

$$-m_{g,s,s',a,a'} = 49\% \times 1.38 = 0.6762$$
, for  $a' = 25-29$ ;

$$-m_{g,s,s',a,a'} = 12\% \times 1.38 = 0.1656$$
, for  $a' = 30-34$ ;

 $-m_{g,s,s',a,a'} = 2\% \times 1.38 = 0.0276$ , for a' = 35-39;



Sexual partnership matrix for female (average-risk group)

| Age   | 12  | 15  | 20  | 25  | 30  | 35  | 40  | 45  | 50  | 55  | 60  | 65  |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|       | -14 | -19 | -24 | -29 | -34 | -39 | -44 | -49 | -54 | -59 | -64 | -80 |
| 12-19 | 1%  | 26% |     | 15% |     |     | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  |
| 20-24 | 0%  | 0%  | 36% | 49% | 12% | 2%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  |
|       |     |     |     |     |     |     |     |     |     |     |     |     |
| 65-80 | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 0%  | 14% | 86% |

Annual max, average and mean partner acquisition rate for females

|       |      | Females |      |      |      |      |
|-------|------|---------|------|------|------|------|
| Age   | Min  | Mean    | Max  | Min  | Mean | Max  |
| 12-19 | 0.74 | 1.26    | 1.78 | 0.90 | 1.92 | 2.94 |
| 20-24 | 0.54 | 0.96    | 1.38 | 0.68 | 1.38 | 2.09 |
|       |      |         |      |      |      |      |
| 60-   | 0.05 | 0.10    | 0.15 | 0.04 | 0.11 | 0.18 |

- Consider a 20 year old female in the average-risk group and assume the maximum partner acquisition rate
- Then the sexual mixing matrices are defined as

 $-m_{g,s,s',a,a'} = 36\% \times 1.38 = 0.4968$ , for a' = 20-24;

$$-m_{g,s,s',a,a'} = 49\% \times 1.38 = 0.6762$$
, for  $a' = 25-29$ ;

- $-m_{g,s,s',a,a'} = 12\% \times 1.38 = 0.1656$ , for a' = 30-34;
- $-m_{g,s,s',a,a'} = 2\% \times 1.38 = 0.0276$ , for a' = 35-39;
- $-m_{g,s,s',a,a'} = 0$ , for any other age group a'.



$$\kappa_{g,s,a} = \epsilon \sum_{s',a'} m_{g,s,s',a,a'} \left( \frac{I_{g',s',a'}}{N_{g',s',a'}} \right)$$

- $\epsilon$  represents the HPV transmission probability per partnership
- *m*<sub>g,s,s',a,a'</sub> represents the sexual mixing matrix
- $I_{g',s',a'}$  indicates the number of infected individuals of gender g', sexual activity s' and age a'
- $N_{g',s',a'}$  indicates the total number of individuals of gender g', sexual activity s' and age a'.
- At each time point *t*, the probability of HPV infection depends on the pool of opposite sex partners
- a) available for mating, depending on age and sexual activity
- b) currently infected by HPV, accounting for herd immunity in interventions with vaccination.



$$\kappa_{g,s,a} = \epsilon \sum_{s',a'} m_{g,s,s',a,a'} \left( \frac{I_{g',s',a'}}{N_{g',s',a'}} \right)$$

- $\epsilon$  represents the HPV transmission probability per partnership
- $m_{g,s,s',a,a'}$  represents the sexual mixing matrix
- $I_{g',s',a'}$  indicates the number of infected individuals of gender g', sexual activity s' and age a'
- $N_{g',s',a'}$  indicates the total number of individuals of gender g', sexual activity s' and age a'.
- At each time point *t*, the probability of HPV infection depends on the pool of opposite sex partners
- a) available for mating, depending on age and sexual activity
- b) currently infected by HPV, accounting for herd immunity in interventions with vaccination.



$$\kappa_{g,s,a} = \epsilon \sum_{s',a'} m_{g,s,s',a,a'} \left( \frac{I_{g',s',a'}}{N_{g',s',a'}} \right)$$

- $\epsilon$  represents the HPV transmission probability per partnership
- $m_{g,s,s',a,a'}$  represents the sexual mixing matrix
- $I_{g',s',a'}$  indicates the number of infected individuals of gender g', sexual activity s' and age a'
- $N_{g',s',a'}$  indicates the total number of individuals of gender g', sexual activity s' and age a'.
- At each time point *t*, the probability of HPV infection depends on the pool of opposite sex partners
- a) available for mating, depending on age and sexual activity
- b) currently infected by HPV, accounting for herd immunity in interventions with vaccination.



$$\kappa_{g,s,a} = \epsilon \sum_{s',a'} m_{g,s,s',a,a'} \left( \frac{I_{g',s',a'}}{N_{g',s',a'}} \right)$$

- $\epsilon$  represents the HPV transmission probability per partnership
- $m_{g,s,s',a,a'}$  represents the sexual mixing matrix
- $I_{g',s',a'}$  indicates the number of infected individuals of gender g', sexual activity s' and age a'
- $N_{g',s',a'}$  indicates the total number of individuals of gender g', sexual activity s' and age a'.
- At each time point *t*, the probability of HPV infection depends on the pool of opposite sex partners
- a) available for mating, depending on age and sexual activity
- b) currently infected by HPV, accounting for herd immunity in interventions with vaccination.



$$\kappa_{g,s,a} = \epsilon \sum_{s',a'} m_{g,s,s',a,a'} \left( \frac{I_{g',s',a'}}{N_{g',s',a'}} \right)$$

- $\epsilon$  represents the HPV transmission probability per partnership
- $m_{g,s,s',a,a'}$  represents the sexual mixing matrix
- $I_{g',s',a'}$  indicates the number of infected individuals of gender g', sexual activity s' and age a'
- $N_{g',s',a'}$  indicates the total number of individuals of gender g', sexual activity s' and age a'.

# At each time point *t*, the probability of HPV infection depends on the pool of opposite sex partners

- a) available for mating, depending on age and sexual activity
- b) currently infected by HPV, accounting for herd immunity in interventions with vaccination.



$$\kappa_{g,s,a} = \epsilon \sum_{s',a'} m_{g,s,s',a,a'} \left( \frac{I_{g',s',a'}}{N_{g',s',a'}} \right)$$

- $\epsilon$  represents the HPV transmission probability per partnership
- $m_{g,s,s',a,a'}$  represents the sexual mixing matrix
- $I_{g',s',a'}$  indicates the number of infected individuals of gender g', sexual activity s' and age a'
- $N_{g',s',a'}$  indicates the total number of individuals of gender g', sexual activity s' and age a'.
- At each time point *t*, the probability of HPV infection depends on the pool of opposite sex partners
- a) available for mating, depending on age and sexual activity
- b) currently infected by HPV, accounting for herd immunity in interventions with vaccination.



$$\kappa_{g,s,a} = \epsilon \sum_{s',a'} m_{g,s,s',a,a'} \left( \frac{I_{g',s',a'}}{N_{g',s',a'}} \right)$$

- $\epsilon$  represents the HPV transmission probability per partnership
- $m_{g,s,s',a,a'}$  represents the sexual mixing matrix
- $I_{g',s',a'}$  indicates the number of infected individuals of gender g', sexual activity s' and age a'
- $N_{g',s',a'}$  indicates the total number of individuals of gender g', sexual activity s' and age a'.
- At each time point *t*, the probability of HPV infection depends on the pool of opposite sex partners
- a) available for mating, depending on age and sexual activity
- b) currently infected by HPV, accounting for herd immunity in interventions with vaccination.

- The HPV infection rates  $\kappa_{g,s,a}$  have to be transformed into probabilities  $\lambda_{g,s,a}$
- Cooper et al.'s formula is based on the assumption of constant transition probabilities over the whole observation period
- $\lambda_{g,s,a}$  are the transition probabilities from the health states *Exposure* to *Infection*
- These are directly integrated into the health state allocation algorithm of the MM
- $\rightarrow$  Health economic analysis by means of output of MM

- The HPV infection rates  $\kappa_{g,s,a}$  have to be transformed into probabilities  $\lambda_{g,s,a}$
- Cooper et al.'s formula is based on the assumption of constant transition probabilities over the whole observation period
- $\lambda_{g,s,a}$  are the transition probabilities from the health states *Exposure* to *Infection*
- These are directly integrated into the health state allocation algorithm of the MM
- $\rightarrow$  Health economic analysis by means of output of MM

- The HPV infection rates  $\kappa_{g,s,a}$  have to be transformed into probabilities  $\lambda_{g,s,a}$
- Cooper et al.'s formula is based on the assumption of constant transition probabilities over the whole observation period
- $\lambda_{g,s,a}$  are the transition probabilities from the health states *Exposure* to *Infection*
- These are directly integrated into the health state allocation algorithm of the MM
- $\bullet \ \rightarrow \ \text{Health}$  economic analysis by means of output of MM

- The HPV infection rates  $\kappa_{g,s,a}$  have to be transformed into probabilities  $\lambda_{g,s,a}$
- Cooper et al.'s formula is based on the assumption of constant transition probabilities over the whole observation period
- $\lambda_{g,s,a}$  are the transition probabilities from the health states *Exposure* to *Infection*
- These are directly integrated into the health state allocation algorithm of the MM
- $\bullet \rightarrow$  Health economic analysis by means of output of MM



Running the MCMC simulations to obtain the posterior distributions of all model parameters



- Running the MCMC simulations to obtain the posterior distributions of all model parameters
- Investigating convergence and the amount of autocorrelation to identify critical parameters



- Running the MCMC simulations to obtain the posterior distributions of all model parameters
- Investigating convergence and the amount of autocorrelation to identify critical parameters
- Computing the transition probabilities according to the specified formulae



- Running the MCMC simulations to obtain the posterior distributions of all model parameters
- Investigating convergence and the amount of autocorrelation to identify critical parameters
- Ocmputing the transition probabilities according to the specified formulae
- 3 Running the algorithm of sexual mixing and allocating all individuals to their corresponding health states throughout the full observation time horizon



- Running the MCMC simulations to obtain the posterior distributions of all model parameters
- Investigating convergence and the amount of autocorrelation to identify critical parameters
- Ocmputing the transition probabilities according to the specified formulae
- 3 Running the algorithm of sexual mixing and allocating all individuals to their corresponding health states throughout the full observation time horizon
- 6 Calculating overall costs and utilities, resulting in the cost-effectiveness analysis



- Just Another Gibbs Sampler (JAGS)
- Integrated into R by means of package R2jags
- 2 parallel chains ( $n_{chains} = 2$ )
- $n_{iter} = 40,000$  simulations
- burn-in of  $n_{\text{burn}} = 4,000$
- thinning step of  $n_{thin} = 360$

$$n_{\rm sims} = n_{\rm chains} \frac{(n_{\rm iter} - n_{\rm burn})}{n_{\rm thin}} = 2 \frac{(40,000 - 4,000)}{360} = 200$$



- Just Another Gibbs Sampler (JAGS)
- Integrated into R by means of package R2jags
- 2 parallel chains ( $n_{chains} = 2$ )
- $n_{iter} = 40,000$  simulations
- burn-in of  $n_{\text{burn}} = 4,000$
- thinning step of  $n_{thin} = 360$

$$n_{\rm sims} = n_{\rm chains} \frac{(n_{\rm iter} - n_{\rm burn})}{n_{\rm thin}} = 2 \frac{(40,000 - 4,000)}{360} = 200$$



- Just Another Gibbs Sampler (JAGS)
- Integrated into R by means of package R2jags
- 2 parallel chains  $(n_{chains} = 2)$
- $n_{iter} = 40,000$  simulations
- burn-in of  $n_{\text{burn}} = 4,000$
- thinning step of  $n_{thin} = 360$

$$n_{\rm sims} = n_{\rm chains} \frac{(n_{\rm iter} - n_{\rm burn})}{n_{\rm thin}} = 2 \frac{(40,000 - 4,000)}{360} = 200$$



- Just Another Gibbs Sampler (JAGS)
- Integrated into R by means of package R2jags
- 2 parallel chains ( $n_{chains} = 2$ )
- $n_{iter} = 40,000$  simulations
- burn-in of  $n_{\text{burn}} = 4,000$
- thinning step of  $n_{thin} = 360$

$$n_{\rm sims} = n_{\rm chains} \frac{(n_{\rm iter} - n_{\rm burn})}{n_{\rm thin}} = 2 \frac{(40,000 - 4,000)}{360} = 200$$

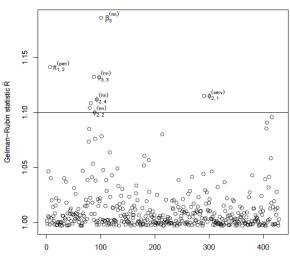


- Just Another Gibbs Sampler (JAGS)
- Integrated into R by means of package R2jags
- 2 parallel chains ( $n_{chains} = 2$ )
- $n_{iter} = 40,000$  simulations
- burn-in of  $n_{\text{burn}} = 4,000$
- thinning step of  $n_{thin} = 360$

$$n_{\rm sims} = n_{\rm chains} \frac{(n_{\rm iter} - n_{\rm burn})}{n_{\rm thin}} = 2 \frac{(40,000 - 4,000)}{360} = 200$$



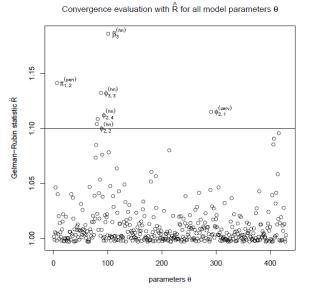
- Just Another Gibbs Sampler (JAGS)
- Integrated into R by means of package R2jags
- 2 parallel chains ( $n_{chains} = 2$ )
- $n_{iter} = 40,000$  simulations
- burn-in of  $n_{\text{burn}} = 4,000$
- thinning step of  $n_{thin} = 360$


$$n_{\rm sims} = n_{\rm chains} \frac{(n_{\rm iter} - n_{\rm burn})}{n_{\rm thin}} = 2 \frac{(40,000 - 4,000)}{360} = 200$$



- Just Another Gibbs Sampler (JAGS)
- Integrated into R by means of package R2jags
- 2 parallel chains  $(n_{chains} = 2)$
- $n_{iter} = 40,000$  simulations
- burn-in of  $n_{\text{burn}} = 4,000$
- thinning step of  $n_{thin} = 360$

$$n_{\rm sims} = n_{\rm chains} \frac{(n_{\rm iter} - n_{\rm burn})}{n_{\rm thin}} = 2 \frac{(40,000 - 4,000)}{360} = 200$$


# Gelman-Rubin statistics $\hat{R}$ for heta



Convergence evaluation with  $\stackrel{\Lambda}{\mathsf{R}}$  for all model parameters  $\theta$ 

parameters θ

# Gelman-Rubin statistics $\hat{R}$ for heta



$$\hat{R} = \sqrt{\frac{Var(\theta_k|y)}{W(\theta_k)}}$$

### The PVC

- Sum of overall costs in intervention i for time t = 1 to t = 55
- Commonly discounted by  $\nu_c = 0.03$

$$\mathsf{PVC}_{i} = \sum_{t=1}^{t=55} \frac{C_{i,t}}{(1+\nu_{c})^{t-1}}$$

### The PVC

- Sum of overall costs in intervention i for time t = 1 to t = 55
- Commonly discounted by  $\nu_c = 0.03$

$$\mathsf{PVC}_{i} = \sum_{t=1}^{t=55} \frac{C_{i,t}}{(1+\nu_{c})^{t-1}}$$

### The PVC

- Sum of overall costs in intervention i for time t = 1 to t = 55
- Commonly discounted by  $\nu_c = 0.03$

$$\mathsf{PVC}_i = \sum_{t=1}^{t=55} \frac{C_{i,t}}{(1+\nu_c)^{t-1}}$$

### The PVU

- Sum of overall utilities in intervention i for time t = 1 to t = 55
- Commonly discounted by  $\nu_u = 0.015$

$$\mathsf{PVU}_i = \sum_{t=1}^{t=55} \frac{U_{i,t}}{(1+\nu_u)^{t-1}}$$

### The PVC

- Sum of overall costs in intervention i for time t = 1 to t = 55
- Commonly discounted by  $\nu_c = 0.03$

$$\mathsf{PVC}_i = \sum_{t=1}^{t=55} \frac{C_{i,t}}{(1+\nu_c)^{t-1}}$$

### The PVU

- Sum of overall utilities in intervention i for time t = 1 to t = 55
- Commonly discounted by  $\nu_u = 0.015$

$$\mathsf{PVU}_{i} = \sum_{t=1}^{t=55} \frac{U_{i,t}}{(1+\nu_{u})^{t-1}}$$

### The PVC

- Sum of overall costs in intervention i for time t = 1 to t = 55
- Commonly discounted by  $\nu_c = 0.03$

$$\mathsf{PVC}_i = \sum_{t=1}^{t=55} \frac{C_{i,t}}{(1+\nu_c)^{t-1}}$$

### The PVU

- Sum of overall utilities in intervention i for time t = 1 to t = 55
- Commonly discounted by  $\nu_u = 0.015$

$$\mathsf{PVU}_i = \sum_{t=1}^{t=55} \frac{U_{i,t}}{(1+\nu_u)^{t-1}}$$

### Comparison of universal to female-only vaccination

•  $\Delta_c = \mathsf{PVC}_3 - \mathsf{PVC}_2$ 

• 
$$\Delta_e = \mathsf{PVU}_3 - \mathsf{PVU}_2$$

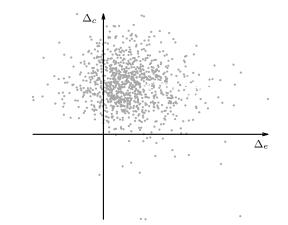
### The PVC

- Sum of overall costs in intervention i for time t = 1 to t = 55
- Commonly discounted by  $\nu_c = 0.03$

$$\mathsf{PVC}_i = \sum_{t=1}^{t=55} \frac{C_{i,t}}{(1+\nu_c)^{t-1}}$$

### The PVU

- Sum of overall utilities in intervention i for time t = 1 to t = 55
- Commonly discounted by  $\nu_u = 0.015$

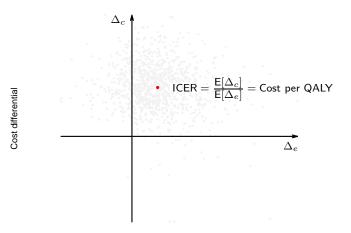

$$\mathsf{PVU}_i = \sum_{t=1}^{t=55} \frac{U_{i,t}}{(1+\nu_u)^{t-1}}$$

### Comparison of universal to female-only vaccination

- $\Delta_c = \mathsf{PVC}_3 \mathsf{PVC}_2$
- $\Delta_e = \mathsf{PVU}_3 \mathsf{PVU}_2$

# Cost-effectiveness plane vs ICER

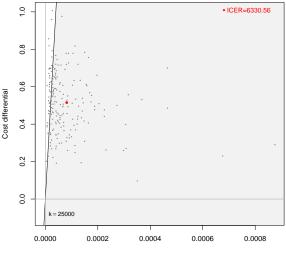
Cost-effectiveness plane




Effectiveness differential

Cost differential

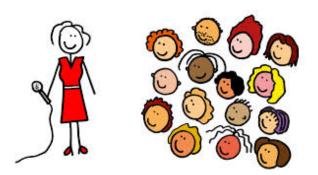
# Cost-effectiveness plane vs ICER


Cost-effectiveness plane



Effectiveness differential

### Universal versus female-only vaccination


Cost effectiveness plane Universal vs Female-only



Effectiveness differential

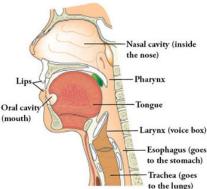


# Thank you very much for your attention.





# Appendix


# Anal, head/neck, vaginal, vulvar, and penile cancer

- Multifactorial diseases
- HPV-induced:
  - more than 90% of anal cancers
  - more than 50% of vaginal, vulvar and penile cancers
  - 60–70% of oropharyngeal cancers
- Other head/neck cancers mainly attributed to tobacco and alcohol



# Anal, head/neck, vaginal, vulvar, and penile cancer

- Multifactorial diseases
- HPV-induced:
  - more than 90% of anal cancers
  - more than 50% of vaginal, vulvar and penile cancers
  - 60–70% of oropharyngeal cancers
- Other head/neck cancers mainly attributed to tobacco and alcohol



# Anal, head/neck, vaginal, vulvar, and penile cancer

- Multifactorial diseases
- HPV-induced:
  - more than 90% of anal cancers
  - more than 50% of vaginal, vulvar and penile cancers
  - 60–70% of oropharyngeal cancers
- Other head/neck cancers mainly attributed to tobacco and alcohol







### Databases

- Scopus
- Pubmed
- Cochrane Library
- Web of Science
- Centre for Review and Dissemination (CRD)
  - Database of Abstracts of Reviews of Effects (DARE)
  - NHS Economic Evaluation Database (EED)
  - Health Technology Assessment (HTA)



# Search word combinations

((cost-effectiveness) OR (cost-utility) OR (cost-benefit)) AND ((HPV vaccine) OR (human papillomavirus vaccine) OR HPV or (human papillomavirus))

### For universal vaccination extended by

AND (boys OR male)



# Checklist for literature review

#### Methodology

- Static vs. dynamic
- Deterministic vs. stochastic
- Ordinary differential equation (ODE) vs. Markov model vs. hybrid model
- Population-based vs. individual-based vs. microsimulation model

#### Model assumptions

- Country of investigation
- HPV types involved
- HPV-induced diseases
- Vaccine coverage rate
- Vaccine efficacy
- Vaccination age
- Male vaccination

#### **Research outcome**

- Cost-effectiveness analysis
- HPV-prevalence reduction

- Duration of immunity
- Application of booster
- Levels of sexual activity
- Sexual mixing strategy
- Cervical screening strategy
- Duration of follow-up
- Time step of follow-up

### **Universal HPV vaccination: 26 publications**

- 8 reuse methodology
- 8 ordinary differential equation (ODE) models
- 1 static Markov model

- 2 network models
- 3 difference equation models
- 3 hybrid models
- 1 prevalence-based model

### Female-only HPV vaccination: 90 publications

- $\approx$  50% reuse methodology
- 25 static Markov models
- 4 microsimulation models
- 3 cohort models
- 1 prevalence-based model

- 2 difference equation models
- 1 network model
- 10 ODE models
- 8 hybrid models

### **Universal vaccination**

- 8 publications: cost-effective results
- 7 publications: non-cost-effective results
- 11 publications: only HPV prevalence reductions

### Female-only vaccination

- 75 publications: cost-effective results
- 1 publication: non-cost-effective results
- 10 publications: only HPV prevalence reductions
- 4 publications: no research outcomes

### **Universal vaccination**

- Taira et al.
  - Difference equation model for HPV transmission
  - Static Markov disease progression model
- Kim et al.
  - ODE model for HPV transmission
  - Microsimulation disease progression model
- Horn et al.
  - ODE model for HPV transmission
  - Static Markov disease progression model

# **Bayesian Markov models**

- Probabilistic nature
- Exhaustive and mutually exclusive health states
- Moving between health states according to specified transition probabilities
  - Assigning flat and informative distributions with suitable ranges
  - Prior information out of the literature or from expert opinion
  - Updating posterior distributions with available data
  - Propagating parameter uncertainty by Markov Chain Monte Carlo estimations (MCMC)
- Model calibration with age- and gender-specific data on prevalence of HPV infection and induced diseases
- Each health state is assigned a value of utility
  - Ranging between 0 and 1
  - 0 represents death, 1 perfect health
  - Specified with Time Trade-Off (TTO) method
- Health economic analysis of multi cohort HPV vaccination strategy

# **UC**L

### Combination of

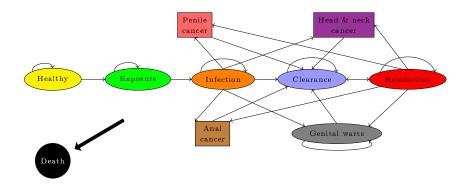
- natural history of disease infection and progression models
- dynamic sexual disease transmission models
- Age- and gender-specific HPV prevalence can be calculated beforehand
  - by means of discrete or continous time models
  - these probabilities inform the disease progression model afterwards
- Alternative: the process of sexual mixing can be integrated directly into the static disease progression model

# **UC**L

### Combination of

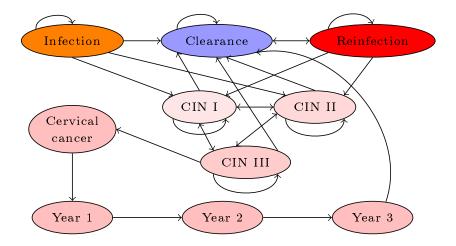
- natural history of disease infection and progression models
- dynamic sexual disease transmission models
- Age- and gender-specific HPV prevalence can be calculated beforehand
  - by means of discrete or continous time models
  - these probabilities inform the disease progression model afterwards
- Alternative: the process of sexual mixing can be integrated directly into the static disease progression model

# **UC**L

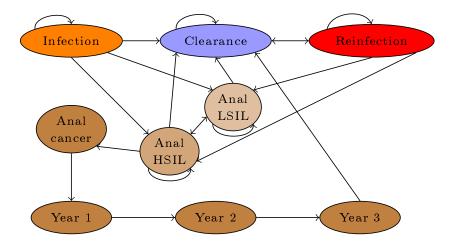

### Combination of

- natural history of disease infection and progression models
- dynamic sexual disease transmission models
- Age- and gender-specific HPV prevalence can be calculated beforehand
  - by means of discrete or continous time models
  - these probabilities inform the disease progression model afterwards
- Alternative: the process of sexual mixing can be integrated directly into the static disease progression model

### Male model compartment

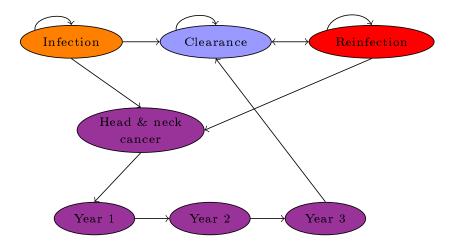

**UC**L

### $S_m = 22$ health states

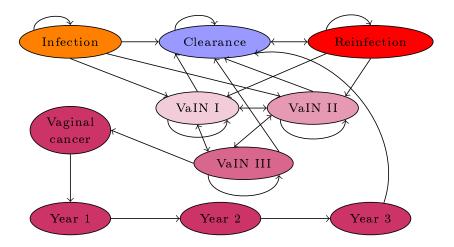



### **Cervical cancer**

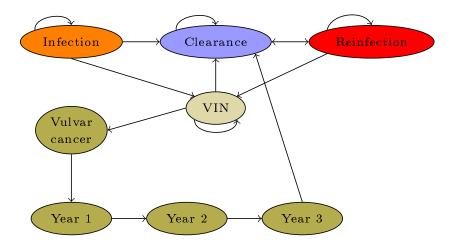




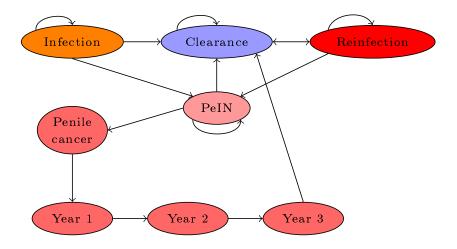



### Head and neck cancer


≜UCL
















# Transition probabilities

- Individuals move across health states according to  $p_{i,a,j,h}$ , where
  - *i* indexes the respective health intervention;
  - a indexes the individual's age;
  - -j indexes the original health state;
  - h indexes the target health state.
- All transitions from one health state have to sum up to 1 (constraint of probabilities)
- Transitions to the set of health states  ${\mathcal H}$  are possible
- Transitions to health states outside of  $\mathcal{H}$  are set to 0
- Remaining in respective state is induced by  $1 \sum_{p_{i,a,j,h}} \forall h \in \mathcal{H}$
- Different transition probabilities for females and males as a consequence of different numbers of health states and gender-specific parameters
- Gender-specific parameters with the index g = 0 represent females

# Examples: From the state *Healthy* (j = 1)

- Individuals can have sex (indicated by  $s_a$ ) and move to h = 2
- Individuals can die (indicated by  $d_{a,0}$ ) and move to h = 9
- Individuals can remain in perfect health (h = 1)

$$p_{i,a,1,h} = 0 \forall h \notin \{1, 2, 9\}$$

$$p_{i,a,1,2} = s_a$$

$$p_{i,a,1,9} = d_{a,0}$$

$$p_{i,a,1,1} = 1 - \sum_{h \neq 1} p_{i,a,1,h}$$

# From the state Exposed (screening-only)

- Individuals in j=2 can have acquire HPV infection (indicated by  $\lambda_{0,s,a})$  and move to h=3
- Individuals in j = 2 can die (indicated by  $d_{a,0}$ ) and move to h = 9
- Individuals in j = 2 can remain in exposure (h = 2)

$$p_{1,a,2,h} = 0 \forall h \notin \{2,3,9\}$$

$$p_{1,a,2,3} = \lambda_{0,s,a}$$

$$p_{1,a,2,9} = d_{a,0}$$

$$p_{1,a,2,2} = 1 - \sum_{h \neq 2} p_{1,a,2,h}$$

# From the state *Exposed* (vaccination)

- Individuals in j = 2 can have acquire HPV infection (indicated by  $\lambda_{0,s,a}$ ) and move to h = 3
- Individuals in j = 2 can die (indicated by  $d_{a,0}$ ) and move to h = 9
- Individuals in j = 2 can remain in exposure (h = 2)

$$p_{2,a,2,h} = 0 \forall h \notin \{2,3,9\}$$

$$p_{2,a,2,3} = \alpha_1 [\omega_3(1-\gamma_1)\lambda_{0,s,a} + (1-\omega_3)(1-\zeta\gamma_1)\lambda_{0,s,a}] + (1-\alpha_1)\lambda_{0,s,a}$$

$$p_{2,a,2,9} = d_{a,0}$$

$$p_{2,a,2,2} = 1 - \sum_{h \neq 2} p_{2,a,2,h}$$

- $\alpha_1$  represents the vaccine coverage in female-only vaccination
- $\gamma_1$  represents the vaccine efficacy
- $\omega_3$  represents the vaccine compliance
- $\zeta$  represents the reduction in effectiveness due to noncompliance

# Population dynamics



|        | Time of follow-up |     |     |     |    |    |    |    |    |    |    |  |    |
|--------|-------------------|-----|-----|-----|----|----|----|----|----|----|----|--|----|
| Cohort | 0                 | 1   | 2   | 3   | 4  | 5  | 6  | 7  | 8  | 9  | 10 |  | 55 |
| 1      | 25                | 26  | 27  | 28  | 29 | 30 | 31 | 32 | 33 | 34 | 35 |  | 80 |
| 2      | 24                | 25  | 26  | 27  | 28 | 29 | 30 | 31 | 32 | 33 | 34 |  | 79 |
| 3      | 23                | 24  | 25  | 26  | 27 | 28 | 29 | 30 | 31 | 32 | 33 |  | 78 |
| 4      | 22                | 23  | 24  | 25  | 26 | 27 | 28 | 29 | 30 | 31 | 32 |  | 77 |
| 5      | 21                | 22  | 23  | 24  | 25 | 26 | 27 | 28 | 29 | 30 | 31 |  | 76 |
| 6      | 20                | 21  | 22  | 23  | 24 | 25 | 26 | 27 | 28 | 29 | 30 |  | 75 |
| 7      | 19                | 20  | 21  | 22  | 23 | 24 | 25 | 26 | 27 | 28 | 29 |  | 74 |
| 8      | 18                | 19  | 20  | 21  | 22 | 23 | 24 | 25 | 26 | 27 | 28 |  | 73 |
| 9      | 17                | 18  | 19  | 20  | 21 | 22 | 23 | 24 | 25 | 26 | 27 |  | 72 |
| 10     | 16                | 17  | 18  | 19  | 20 | 21 | 22 | 23 | 24 | 25 | 26 |  | 71 |
| 11     | 15                | 16  | 17  | 18  | 19 | 20 | 21 | 22 | 23 | 24 | 25 |  | 70 |
| 12*    | 14                | 15* | 16  | 17  | 18 | 19 | 20 | 21 | 22 | 23 | 24 |  | 69 |
| 13*    | 13                | 14  | 15* | 16  | 17 | 18 | 19 | 20 | 21 | 22 | 23 |  | 68 |
| 14*    | 12                | 13  | 14  | 15* | 16 | 17 | 18 | 19 | 20 | 21 | 22 |  | 67 |
| 15     |                   | 12  | 13  | 14  | 15 | 16 | 17 | 18 | 19 | 20 | 21 |  | 66 |
| 16     |                   |     | 12  | 13  | 14 | 15 | 16 | 17 | 18 | 19 | 20 |  | 65 |
| 17     |                   |     |     | 12  | 13 | 14 | 15 | 16 | 17 | 18 | 19 |  | 64 |
| 18     |                   |     |     |     | 12 | 13 | 14 | 15 | 16 | 17 | 18 |  | 63 |
| 19     |                   |     |     |     |    | 12 | 13 | 14 | 15 | 16 | 17 |  | 62 |
| 20     |                   |     |     |     |    |    | 12 | 13 | 14 | 15 | 16 |  | 61 |
| 21     |                   |     |     |     |    |    |    | 12 | 13 | 14 | 15 |  | 60 |
| 22     |                   |     |     |     |    |    |    |    | 12 | 13 | 14 |  | 59 |
| 23     |                   |     |     |     |    |    |    |    |    | 12 | 13 |  | 58 |
| 24     |                   |     |     |     |    |    |    |    |    |    | 12 |  | 57 |

### Convergence



- Running 2 chains in parallel to calculate posterior distributions of parameters  $\pmb{\theta} = (\theta_1,...,\theta_k)$
- Choosing two different starting points with larger variance compared to the underlying data
- Comparing within-chain variance  $W(\theta_k)$  to between-chain variance  $B(\theta_k)$
- $n_{sims}$  represents the length of the MCMC sample

$$\widehat{Var}(\theta_k|y) = \frac{n_{\text{sims}} - 1}{n_{\text{sims}}} W(\theta_k) + \frac{1}{n_{\text{sims}}} B(\theta_k)$$

Convergence is monitored by assessing the potential scale reduction

$$\hat{R} = \sqrt{\frac{\widehat{Var}(\theta_k|y)}{W(\theta_k)}}$$

- $\hat{R}$  is the factor by which the scale of the posterior distribution of  $\theta_k$  can be further reduced
- A longer MCMC run will possibly improve convergence
- $R \leq 1.1$  represents sufficient convergence

# Autocorrelation

- MCMC iterations are by definition correlated
- Current observation depends on previous one
- The higher the autocorrelation, the lower the equivalence between MCMC output and a proper *iid* sample

$$n_{\scriptscriptstyle eff} = rac{n_{\scriptscriptstyle sims}}{1+2\sum_{t=1}^\infty corr_t}$$

- $corr_t$  is the *lag t* autocorrelation
- $n_{\rm eff} \approx n_{\rm sims}$  indicates negligible autocorrelation
- In case of high autocorrelation
  - convergence can still be reached
  - extreme quantiles of the posterior distribution are typically estimated without precision

#### Presentation of preliminary results under baseline assumptions

- vaccination of 12 year old females and males
- high vaccine coverage rate in the catch-up vaccination

#### Detailed explanation of calculation process including

- overall costs and utilities
- present values of cost (PVC) and utility (PVU)
- Incremental Cost-Effectiveness Ratio (ICER)
- cost-effectiveness plane

#### **Costs include**

#### diagnosic procedures of health states

- 2 pap smears and 2 colposcopies in females with CIN I-III
- 1 HPV DNA test in females with CIN III and cervical cancer
- anoscopy, biopsy, cytology in individuals with anal LSIL and HSIL
- diagnostic costs of other HPV-induced diseases already included in treatment costs
- treatment of HPV-induced precancerous lesions and cancers
- vaccine administration and product costs in female-only, universal and catch-up interventions

#### **Costs include**

#### diagnosic procedures of health states

- 2 pap smears and 2 colposcopies in females with CIN I-III
- 1 HPV DNA test in females with CIN III and cervical cancer
- anoscopy, biopsy, cytology in individuals with anal LSIL and HSIL
- diagnostic costs of other HPV-induced diseases already included in treatment costs
- treatment of HPV-induced precancerous lesions and cancers
- vaccine administration and product costs in female-only, universal and catch-up interventions

#### **Costs include**

- diagnosic procedures of health states
  - 2 pap smears and 2 colposcopies in females with CIN I-III
  - 1 HPV DNA test in females with CIN III and cervical cancer
  - anoscopy, biopsy, cytology in individuals with anal LSIL and HSIL
  - diagnostic costs of other HPV-induced diseases already included in treatment costs
- treatment of HPV-induced precancerous lesions and cancers
- vaccine administration and product costs in female-only, universal and catch-up interventions

#### **Costs include**

- diagnosic procedures of health states
  - 2 pap smears and 2 colposcopies in females with CIN I-III
  - 1 HPV DNA test in females with CIN III and cervical cancer
  - anoscopy, biopsy, cytology in individuals with anal LSIL and HSIL
  - diagnostic costs of other HPV-induced diseases already included in treatment costs
- treatment of HPV-induced precancerous lesions and cancers
- vaccine administration and product costs in female-only, universal and catch-up interventions

#### **Costs include**

- diagnosic procedures of health states
  - 2 pap smears and 2 colposcopies in females with CIN I-III
  - 1 HPV DNA test in females with CIN III and cervical cancer
  - anoscopy, biopsy, cytology in individuals with anal LSIL and HSIL
  - diagnostic costs of other HPV-induced diseases already included in treatment costs
- treatment of HPV-induced precancerous lesions and cancers
- vaccine administration and product costs in female-only, universal and catch-up interventions

#### Utilities are considered stage- and gender-specific.

Utility loss in certain health state only occurs after its diagnosis

#### **Costs include**

- diagnosic procedures of health states
  - 2 pap smears and 2 colposcopies in females with CIN I-III
  - 1 HPV DNA test in females with CIN III and cervical cancer
  - anoscopy, biopsy, cytology in individuals with anal LSIL and HSIL
  - diagnostic costs of other HPV-induced diseases already included in treatment costs
- treatment of HPV-induced precancerous lesions and cancers
- vaccine administration and product costs in female-only, universal and catch-up interventions

#### Utilities are considered stage- and gender-specific.

Utility loss in certain health state only occurs after its diagnosis

≜UCL

**Unit** costs and utilities are multiplied by the number of individuals in intervention i at time t in the respective health state, and by the probabilities of diagnosis, to result in **overall** measures.

$$\begin{split} C_{i,t} &= C_{i,t}^{scr} + C_{i}^{vac} + C_{i,t}^{gw} + C_{1,i,t}^{cin} + C_{2,i,t}^{cin} + C_{3,i,t}^{cin} + C_{i,t}^{eerv} + C_{i,t}^{lsil} \\ &+ C_{i,t}^{hsil} + C_{i,t}^{an} + C_{i,t}^{hn} + C_{i,t}^{vvin} + C_{i,t}^{vulv} + C_{1,i,t}^{vuin} + C_{2,i,t}^{vain} + C_{3,i,t}^{vain} \\ &+ C_{i,t}^{pein} + C_{i,t}^{pen} \end{split}$$

$$\begin{split} U_{i,t} &= U_{i,t}^{health} + U_{i,t}^{inf} + U_{i,t}^{gw} + U_{1,i,t}^{cin} + U_{2,i,t}^{cin} + U_{3,i,t}^{cenv} + U_{i,t}^{lsil} \\ &+ U_{i,t}^{hsil} + U_{r,i,t}^{an} + U_{r,i,t}^{hn} + U_{i,t}^{vvin} + U_{r,i,t}^{vulv} + U_{1,i,t}^{vuin} + U_{2,i,t}^{vain} + U_{3,i,t}^{vain} \\ &+ U_{r,i,t}^{vag} + U_{i,t}^{pein} + U_{r,i,t}^{pen} \end{split}$$

- Standard measure in cost-effectiveness analyses
- Incremental cost per QALY gained
  - Quality-Adjusted Life Year
  - Utility of health state is multiplied with amount of time spent within
- All model parameters in vector  $\boldsymbol{\theta} = (\boldsymbol{\theta^3}, \boldsymbol{\theta^2})$ 
  - $\theta^3$  representing parameters in i = 3 (universal vaccination)
  - $-\theta^2$  representing parameters in i = 2 (female-only vaccination)
- Ratio of expectations of cost- and effectiveness-differentials

$$-\Delta_c = \mathsf{PVC}_3 - \mathsf{PVC}_2$$

$$-\Delta_e = \mathsf{PVU}_3 - \mathsf{PVU}_2$$

$$ICER = \frac{E[\mathsf{PVC}|\boldsymbol{\theta^3}] - E[\mathsf{PVC}|\boldsymbol{\theta^2}]}{E[\mathsf{PVU}|\boldsymbol{\theta^3}] - E[\mathsf{PVU}|\boldsymbol{\theta^2}]} = \frac{E[\Delta_c]}{E[\Delta_e]}$$

- Standard measure in cost-effectiveness analyses
- Incremental cost per QALY gained
  - Quality-Adjusted Life Year
  - Utility of health state is multiplied with amount of time spent within
- All model parameters in vector  $\boldsymbol{\theta} = (\boldsymbol{\theta^3}, \boldsymbol{\theta^2})$ 
  - $\theta^3$  representing parameters in i = 3 (universal vaccination)
  - $-\theta^2$  representing parameters in i = 2 (female-only vaccination)
- Ratio of expectations of cost- and effectiveness-differentials

$$-\Delta_c = \mathsf{PVC}_3 - \mathsf{PVC}_2$$

$$-\Delta_e = \mathsf{PVU}_3 - \mathsf{PVU}_2$$

$$ICER = \frac{E[\mathsf{PVC}|\boldsymbol{\theta^3}] - E[\mathsf{PVC}|\boldsymbol{\theta^2}]}{E[\mathsf{PVU}|\boldsymbol{\theta^3}] - E[\mathsf{PVU}|\boldsymbol{\theta^2}]} = \frac{E[\Delta_c]}{E[\Delta_e]}$$

- Standard measure in cost-effectiveness analyses
- Incremental cost per QALY gained
  - Quality-Adjusted Life Year
  - Utility of health state is multiplied with amount of time spent within
- All model parameters in vector  $\boldsymbol{\theta} = (\boldsymbol{\theta^3}, \boldsymbol{\theta^2})$ 
  - $-\theta^3$  representing parameters in i = 3 (universal vaccination)
  - $-\theta^2$  representing parameters in i = 2 (female-only vaccination)
- Ratio of expectations of cost- and effectiveness-differentials

$$-\Delta_c = \mathsf{PVC}_3 - \mathsf{PVC}_2$$

$$-\Delta_e = \mathsf{PVU}_3 - \mathsf{PVU}_2$$

$$ICER = \frac{E[\mathsf{PVC}|\boldsymbol{\theta}^3] - E[\mathsf{PVC}|\boldsymbol{\theta}^2]}{E[\mathsf{PVU}|\boldsymbol{\theta}^3] - E[\mathsf{PVU}|\boldsymbol{\theta}^2]} = \frac{E[\Delta_c]}{E[\Delta_e]}$$

- Standard measure in cost-effectiveness analyses
- Incremental cost per QALY gained
  - Quality-Adjusted Life Year
  - Utility of health state is multiplied with amount of time spent within
- All model parameters in vector  $\boldsymbol{\theta} = (\boldsymbol{\theta^3}, \boldsymbol{\theta^2})$ 
  - $\theta^3$  representing parameters in i = 3 (universal vaccination)
  - $-\theta^2$  representing parameters in i = 2 (female-only vaccination)
- Ratio of expectations of cost- and effectiveness-differentials

$$-\Delta_c = \mathsf{PVC}_3 - \mathsf{PVC}_2$$

$$-\Delta_e = \mathsf{PVU}_3 - \mathsf{PVU}_2$$

$$ICER = \frac{E[\mathsf{PVC}|\boldsymbol{\theta^3}] - E[\mathsf{PVC}|\boldsymbol{\theta^2}]}{E[\mathsf{PVU}|\boldsymbol{\theta^3}] - E[\mathsf{PVU}|\boldsymbol{\theta^2}]} = \frac{E[\Delta_c]}{E[\Delta_e]}$$

- Standard measure in cost-effectiveness analyses
- Incremental cost per QALY gained
  - Quality-Adjusted Life Year
  - Utility of health state is multiplied with amount of time spent within
- All model parameters in vector  $\boldsymbol{\theta} = (\boldsymbol{\theta^3}, \boldsymbol{\theta^2})$ 
  - $\theta^3$  representing parameters in i = 3 (universal vaccination)
  - $-\theta^2$  representing parameters in i = 2 (female-only vaccination)
- Ratio of expectations of cost- and effectiveness-differentials

$$-\Delta_c = \mathsf{PVC}_3 - \mathsf{PVC}_2$$

$$-\Delta_e = \mathsf{PVU}_3 - \mathsf{PVU}_2$$

$$ICER = \frac{E[\mathsf{PVC}|\boldsymbol{\theta^3}] - E[\mathsf{PVC}|\boldsymbol{\theta^2}]}{E[\mathsf{PVU}|\boldsymbol{\theta^3}] - E[\mathsf{PVU}|\boldsymbol{\theta^2}]} = \frac{E[\Delta_c]}{E[\Delta_e]}$$

# Interpretation of the ICER



#### Positive algebraic sign

- Universal vaccination both higher costs and effects than female-only vaccination
- Universal vaccination both lower costs and effects than female-only vaccination

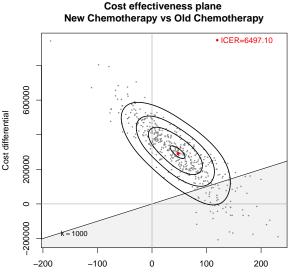
#### Negative algebraic sign

- Universal vaccination higher costs and lower effects than female-only vaccination
- Universal vaccination lower costs and higher effects than female-only vaccination → cost-saving ICER

ICER values between €30,000 and €45,000 are deemed to be cost-effective according to the Italian Health Economics Association (AEIS). In contrast, the NHS in the UK define ICERs under £25,000 to be cost-effective.

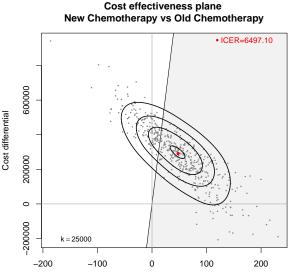
#### Description of the graph

- The x-axis is the effectiveness differential  $\Delta_e$
- The y-axis is the cost differential  $\Delta_c$
- Each point represents a possible future in terms of the expected measures of differential cost and benefit
- The spread of the distribution of points accounts for uncertainty
- The shaded part of the plane indicates the sustainability area (ICERs below the threshold of cost-effectiveness)
- The ICER is displayed as a red dot with its corresponding value




#### Interpretation of the graph

- Points lying in the north-eastern quadrant (i.e. when  $\Delta_e > 0$  and  $\Delta_c > 0$ ) suggest that universal vaccination proves more effective as well as more expensive than female-only vaccination.
- Points lying in the north-western quadrant (i.e. when  $\Delta_e < 0$  and  $\Delta_c > 0$ ) suggest that universal vaccination proves less effective and more expensive than female-only vaccination.
- Points lying in the south-western quadrant (i.e. when  $\Delta_e < 0$  and  $\Delta_c < 0$ ) suggest that universal vaccination proves less effective as well as less expensive than the reference intervention.
- Finally, points lying in the south-eastern quadrant (i.e. when  $\Delta_e > 0$  and  $\Delta_c < 0$ ) suggest that universal vaccination proves more effective and less expensive than female-only vaccination.


# Cost-effectiveness plane vs ICER





Effectiveness differential

# Cost-effectiveness plane vs ICER



Effectiveness differential



- Including layers of uncertainty in the deterministic age- and gender-specific mixing matrices and partner acquisition rates
- Implying the necessity of a booster application
- Generalizing the R code to enable an easier calculation of scenarios next to the baseline
- Conducting a full cost-effectiveness analysis
- **Reading literature** on standard methodology in infectious disease transmission modelling

- Publishing the cost-effectiveness analysis results, focusing especially on the finding of staggered male vaccination age
- Publishing the methodology of the hybrid Bayesian Markov model
- Writing up the final PhD thesis

### Future work

#### Programming tasks

- Including layers of uncertainty in the deterministic age- and gender-specific mixing matrices and partner acquisition rates
- Implying the necessity of a booster application
- Generalizing the R code to enable an easier calculation of scenarios next to the baseline
- Conducting a full cost-effectiveness analysis
- **Reading literature** on standard methodology in infectious disease transmission modelling

- Publishing the cost-effectiveness analysis results, focusing especially on the finding of staggered male vaccination age
- Publishing the methodology of the hybrid Bayesian Markov model
- Writing up the final PhD thesis



- Including layers of uncertainty in the deterministic age- and gender-specific mixing matrices and partner acquisition rates
- Implying the necessity of a booster application
- Generalizing the R code to enable an easier calculation of scenarios next to the baseline
- Conducting a full cost-effectiveness analysis
- **Reading literature** on standard methodology in infectious disease transmission modelling

- Publishing the cost-effectiveness analysis results, focusing especially on the finding of staggered male vaccination age
- Publishing the methodology of the hybrid Bayesian Markov model
- Writing up the final PhD thesis



- Including layers of uncertainty in the deterministic age- and gender-specific mixing matrices and partner acquisition rates
- Implying the necessity of a booster application
- Generalizing the R code to enable an easier calculation of scenarios next to the baseline
- Conducting a full cost-effectiveness analysis
- **Reading literature** on standard methodology in infectious disease transmission modelling

- Publishing the cost-effectiveness analysis results, focusing especially on the finding of staggered male vaccination age
- Publishing the methodology of the hybrid Bayesian Markov model
- Writing up the final PhD thesis



- Including layers of uncertainty in the deterministic age- and gender-specific mixing matrices and partner acquisition rates
- Implying the necessity of a booster application
- Generalizing the R code to enable an easier calculation of scenarios next to the baseline
- Conducting a full cost-effectiveness analysis
- **Reading literature** on standard methodology in infectious disease transmission modelling

- Publishing the cost-effectiveness analysis results, focusing especially on the finding of staggered male vaccination age
- Publishing the methodology of the hybrid Bayesian Markov model
- Writing up the final PhD thesis



- Including layers of uncertainty in the deterministic age- and gender-specific mixing matrices and partner acquisition rates
- Implying the necessity of a booster application
- Generalizing the R code to enable an easier calculation of scenarios next to the baseline
- Conducting a full cost-effectiveness analysis
- **Reading literature** on standard methodology in infectious disease transmission modelling

- Publishing the cost-effectiveness analysis results, focusing especially on the finding of staggered male vaccination age
- Publishing the methodology of the hybrid Bayesian Markov model
- Writing up the final PhD thesis



- Including layers of uncertainty in the deterministic age- and gender-specific mixing matrices and partner acquisition rates
- Implying the necessity of a booster application
- Generalizing the R code to enable an easier calculation of scenarios next to the baseline
- Conducting a full cost-effectiveness analysis
- **Reading literature** on standard methodology in infectious disease transmission modelling

- Publishing the cost-effectiveness analysis results, focusing especially on the finding of staggered male vaccination age
- Publishing the methodology of the hybrid Bayesian Markov model
- Writing up the final PhD thesis



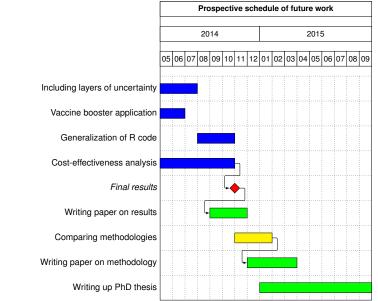
- Including layers of uncertainty in the deterministic age- and gender-specific mixing matrices and partner acquisition rates
- Implying the necessity of a booster application
- Generalizing the R code to enable an easier calculation of scenarios next to the baseline
- Conducting a full cost-effectiveness analysis
- **Reading literature** on standard methodology in infectious disease transmission modelling

- Publishing the cost-effectiveness analysis results, focusing especially on the finding of staggered male vaccination age
- Publishing the methodology of the hybrid Bayesian Markov model
- Writing up the final PhD thesis



- Including layers of uncertainty in the deterministic age- and gender-specific mixing matrices and partner acquisition rates
- Implying the necessity of a booster application
- Generalizing the R code to enable an easier calculation of scenarios next to the baseline
- Conducting a full cost-effectiveness analysis
- **Reading literature** on standard methodology in infectious disease transmission modelling

- Publishing the cost-effectiveness analysis results, focusing especially on the finding of staggered male vaccination age
- Publishing the methodology of the hybrid Bayesian Markov model
- Writing up the final PhD thesis




- Including layers of uncertainty in the deterministic age- and gender-specific mixing matrices and partner acquisition rates
- Implying the necessity of a booster application
- Generalizing the R code to enable an easier calculation of scenarios next to the baseline
- Conducting a full cost-effectiveness analysis
- **Reading literature** on standard methodology in infectious disease transmission modelling

- Publishing the cost-effectiveness analysis results, focusing especially on the finding of staggered male vaccination age
- Publishing the methodology of the hybrid Bayesian Markov model
- Writing up the final PhD thesis

### Gantt chart





Katrin Haeussler