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Overview

1. Extrapolation of RCT evidence over time (slides 4–23)

I Estimating expected survival from short-term RCT +
long-term population data

I Importance of modelling different causes of death

With Tatiana Benaglia (Sao Paulo), Linda Sharples (Leeds)

2. Structural uncertainty in decision models (slides 24–33)

I A brief and broad review of methods

With Linda Sharples (Leeds), Howard Thom (Bristol), Simon Thompson

(Cambridge)
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Part I

Extrapolation over time from RCT data

for health economic evaluations
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Data informing a typical health economic evaluation

“All available and relevant evidence”

Time

Degree of
patient
selection

Disease registers, cohorts

Randomised controlled trials

Population life tables

Natural history, mortality

Intervention effect

Extrapolate costs and QALYs
● for different interventions
● for selected patients
● over long termNatural history, mortality

Mortality

I Combine (relevant) short-term + (less-relevant) long-term
data.

I Extrapolate over time and to different populations.
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Motivating example: ICDs

ICD (Implantable Cardioverter Defibrillators) compared to
anti-arrhythmic drugs (AAD) for prevention of sudden cardiac
death in patients with cardiac arrhythmia.

Data:

I Individual data from cohort of 535 UK cardiac arrhythmia
patients implanted with ICDs between 1991 and 2002.

I Meta-analysis of three (non-UK) RCTs (published HRs).

I Relatively short-term follow-up: approximately 75% of patients
followed for less than 5 years, maximum 10 years

I UK population mortality statistics by age, sex, cause of death.

Estimate the survival curve over the lifetime of ICD and AAD
patients in UK
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Previous Work: central idea (Demiris & Sharples, Stat. Med. 2006)
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the ICD population risk
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Previous Work: key assumption
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hICD(t) = eβhUK (t), for t > 0

Constant (multiplicative)
hazard ratio between ICD and
UK population

This seems a strong
assumption:

1. ICD patients at greater
risk of arrhythmia death

2. If contribution of
arrhythmia deaths
changes over time, then
extrapolating constant
HR for all causes of
death may be inaccurate
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Proportion of UK deaths which are due to arrhythmia

Proportion of Arrhythmic Deaths - UK Population 2002
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Examining implicit assumptions

Extrapolating eβ implicitly assumes arrhythmia hazard is a
constant proportion of all-cause hazard.

May be more plausible to extrapolate constant cause-specific
hazard ratio.

How much difference is this assumption likely to make?

What parameters affect bias of estimates of mean survival?

1. Simulation study to estimate bias and coverage under
different assumptions about model parameters

2. Application to ICD example
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Model to extrapolate survival for ICD patients

(not considering AAD control group, RCT data for the moment. . .)

I General population data: cause of death (k =arrhythmic,
non-arrhythmic) known.
Cause-specific survival is Weibull with hazard:

h
(k)
UK (t) = αkλkt

αk−1

I ICD cohort: cause of death unknown
Overall survival follows a polyhazard model (Louzada-Neto,

Biometrics 1999):

hICD(t) = harrICD(t) + hotherICD (t)

I t: minimum time to one of 2 possible causes of death
I Hazard is the sum of 2 cause-specific hazards
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Cause-specific proportional hazards assumption

ICD cohort hazard is related to the general population hazard as:

hICD(t) = harrICD(t) + hotherICD (t)

= eβharrUK (t) + hotherUK (t)

= eβα1λ1t
α1−1 + α2λ2t

α2−1
(poly-Weibull)

Arrhythmia hazard is proportional
Other-cause hazard is identical

}
to UK matched population.

I Joint Bayesian model for ICD cohort + UK population data

I Estimate joint posterior of parameters α1, α2, λ1, λ2, β by
MCMC (using WinBUGS).

I WBDev add-on needed to implement the poly-Weibull
distribution for the cohort data
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Weakly informative prior distributions

Express beliefs on an intuitive scale — exact choice may make a
difference for small populations
Weibull rate λ:

I Age around 60 on study entry: patients cannot survive more
than 60 additional years. Mean survival ∼ U(0, 60).

I 1/λ ∼ U(0, 100), gives a mean 1/λΓ(1 + 1/α) of < 60, for all
plausible α.

Weibull shape α: controls hazard vs. time: h(t) = αλ(λt)α−1

I Hazard ratio for doubled time t is 2α−1.

I Prior mean of 1.5 for this, with 95% CI about (0.64, 100)

I implies log(α) ∼ N(0.5, σ = 0.78)

Log HR β between ICD patients and general population: 95% CI
for HR (1/150,150) → β ∼ N(0, σ = 2.5)
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Simulation study — generate data of same design

No increase Slow Fast
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Parameters varied:

I Increase in
other-cause hazard
relative to
cause-specific
(other causes may

dominate as people age)

I Hazard ratio between
the ICD cohort and
population

Alternative models fitted

I Correct
(poly-Weibull) model

I Weibull model which
ignores cause of death
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Simulated data and results: Weibull, HR = 4.5 / 20

No increase Slow Fast
ICD:UK arr HR=4.5
Bias -0.1% -5.8% -28.4%
Coverage 94% 78% 0%
ICD:UK arr HR=20
Bias 0.6% -12.5% -26.4%
Coverage 92% 52% 0%

I Ignoring cause-specific hazard by fitting plain Weibull model
gives bias in mean survival

I particularly when hazard increases much quicker for other cause

I When HR between disease / general population bigger (HR 20
vs 4.5): similar bias from ignoring cause

I Any changes through time are more marked (→ more bias)
I Overall HR better estimate of cause-specific HR (→ less bias)
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Extrapolating real ICD cohort data
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I More bias for women when using Weibull instead of
Poly-Weibull.

I due to time-varying proportion of deaths due to arrhythmia.
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Proportion of UK deaths which are due to arrhythmia

Proportion of Arrhythmic Deaths - UK Population 2002
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Including an intervention effect from literature

Hazards for three groups under Poly-Weibull model:

hUK(t) = harrUK(t) + hotherUK (t)

hICD(t) = eβharrUK(t) + hotherUK (t)

hAAD(t) = eγa+βharrUK(t) + hotherUK (t),

Meta-analysis of ICD vs AAD trials, published HR for arrhythmia
mortality, gives a prior for γa.

For the (probably biased) Weibull model we have:

hUK(t) = µ1αt
α−1 = eβ0αtα−1

hICD(t) = eβ1hUK(t) = eβ0+β1αtα−1

hAAD(t) = eγhICD(t) = eβ0+β1+γαtα−1,

Prior for γ from published meta-analysis HR for all-cause mortality.

Outcome of interest → life years gained (LYG) by ICDs vs AADs.
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Extrapolating incremental survival between interventions
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I ICD cohort extrapolated
using population data

I AAD survival generated
with aid of meta-analysis.

I Life-years gained from ICD
appears biased if use
Weibull

I Slightly more apparent
bias for women

Life-years gained from ICD Weibull Poly-Weibull
Overall 1.82 (0.49) 3.12 (0.61)
Women 1.89 (0.62) 3.11 (0.76)
Men 1.73 (0.47) 2.91 (0.58)

. . . Still bias for men
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Proportion of UK deaths which are due to arrhythmia

Proportion of Arrhythmic Deaths - UK Population 2002
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Risks of combining data (1) – data inconsistency

Causes of death may be recorded inconsistently between

I meta-analysis of ICD vs drug trials “HR for arrhythmia
deaths”

I population mortality data

Sensitivity analysis — assume 10%-20%
“arrhythmia”/“non-arrhythmia” deaths are misclassified.

I e.g. if fewer deaths actually affected by treatment, expected
survival gains from treatment lower

I Still doesn’t remove the bias for men.
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Risks of combining data (2) — assumptions about hazards

We assumed ICD patients had

arrhythmia hazard proportional(=greater)

other-cause hazard identical

}
to general population.

I What if ICD patients at greater risk from some other causes
(other heart disease), as well as arrhythmia?

I May have led to biases in survival
(underestimation of AAD-specific survival in poly-Weibull

model. . .reasoning for this in paper)
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Other issues: goodness of fit, prior sensitivity

I Fit of Weibull distribution — OK for our data — better than
alternative Gompertz.

I Model baseline flexibly using semi-parametric model?
I piecewise-constant hazard, Bayesian Cox-like model
I doesn’t alleviate bias from ignoring cause of death

I Tried “flat” prior for Weibull rate log(λ) ∼ N(0, 1000)
I Expected survival 10% higher for women, compared to weakly

informative prior.
I Small sample: only 12 out of 104 died.
I Flat prior includes unnaturally high survival times — better to

include real information about human survival.
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Conclusions: survival extrapolation example

I Bayesian models useful for combining short-term RCT /
cohort and longer-term survival data.

I Ignoring cause-specific hazard, thus misspecifying the
underlying model, introduces bias in survival estimates.

I may underestimate or overestimate overall survival.

I Bias can be alleviated by modelling cause-specific hazards

I but requires cause-specific survival data / treatment effects
I and information about which causes will be affected by disease

status and / or treatment

I Bias for treatment comparisons may be less if bias acts in the
same way in all treatment groups.

I Sensitivity analysis to model / data assumptions important
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Part II

Structural uncertainty in health

economic models
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Health economic models to estimate costs and effects

1. OUT OF
HOSPITAL

8. DEAD

2. HOSPITAL
(cardiac arrhythmia)

3. HOSPITAL
(other cardiac)

4. HOSPITAL
(other non-cardiac)

5. HOSPITAL
(ICD maintenance)

6. HOSPITAL
(ICD replacement)

7. HOSPITAL
(AAD side-effects)

(Example: cost-effectiveness of

implantable defibrillators for cardiac

arrhythmia)

I Commonly Markov models for
clinical history

I Each state / event associated
with a cost or detriment to
quality of life

I Combine all relevant evidence
on disease and treatment –
randomised trials →
meta-analyses, observational
data, national registries. . .

Chris Jackson, MRC-BSU Cambridge Extrapolation and structural uncertainty in health evaluations 25/ 33



Standard procedure for economic modelling

I Choose states to represent important events
– Which are relevant to the decision?

I Identify the parameters of the model
I transition rates between states
I cost and quality of life for each state

I Identify how these parameters vary
I between patients and through time

– What covariates? What time-dependence?

I Estimate parameters from data or expert belief

I Account for ensuing parameter uncertainty probabilistically:

Posterior 
expected costs / 

effects

Monte Carlo
simulationPrior 

distributions
(from data/belief)

 model 
parameters
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Standard procedure for economic modelling

I Choose states to represent important events
– Which are relevant to the decision?

I Identify the parameters of the model
I transition rates between states
I cost and quality of life for each state

I Identify how these parameters vary
I between patients and through time

– What covariates? What time-dependence?

I Estimate parameters from data or expert belief
Which data are relevant? What if no data?

I Account for ensuing parameter uncertainty probabilistically

But what should be modelled?

Structural uncertainty / model uncertainty
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Accounting for structural uncertainty informally

Cost-effectiveness often presented for “best case” assumptions . . .

I understates uncertainty – may be biased

often alongside alternative scenarios

I with little indication of plausibility of each one

If possible, should express structural uncertainty in a formal
probabilistic way
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Setting up the model

I Set up and parameterise model

I Expand model to encompass structural uncertainties

I Extra parameters whose values represent structural choices
I Include as many states / events as might affect the decision
I Allow parameters to vary with as many covariates as might be

relevant

Problem. . .

no data / not enough data to form confident (posterior)
distributions on some parameters
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Examples of structural uncertainty (1): Variable selection

Is there any treatment effect on a particular health event?

Fix treatment effect at β = 0?
Or use a weakly-informed posterior β ∼ f ()?

1. Model averaging:

I compute model choice criteria (e.g. DIC, AIC, Bayes factors)

I express as weights w1,w2 to form mixture posterior

β ∼ w1Iβ=0 + w2f ()

(Jackson et al, (2010) J.R. Stat. Soc. C 59(2); (2009) J. R. Stat. Soc A 172(2))

2. Shrinkage:

I use f () obtained from a prior that “smoothly” shrinks
covariate effect(s) β towards zero. (lasso, elastic net etc.)
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Examples (2): Dependence of parameters on time

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Years after diagnosis

S
ur

vi
va

l

Male

Female

Observed (Kaplan−Meier)
Weibull
Generalized F
Dirichlet Process Mixture

Survival after oral cancer diagnosis: age 50, cancer stage 1

(Thames Cancer Registry, n=6046)

(data from Jackson et al, (2010) Int. J. Biostat.

6(1))

What parametric survival
model?

I Flexible distributions
(3-4 parameters) have
e.g. Weibull as
special cases

I Spline-based models
(Royston & Parmar, Stat.

Med. 2002)

I Bayesian
non-parametrics:
Dirichlet process (e.g.

De Iorio et al., Biometrics

2009)
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Examples (3): uncertainty about state structure

  

Medium 
riskLow risk

Death

High risk

SPLIT

  

Medium /
high riskLow risk

Death

MERGED

I Split or merge medium / high risk coronary disease?

I Which model gives better estimates of expected
quality-adjusted survival, lifetime cost?

I Are costs / quality of life / death rates in medium / high risk
sufficiently different?
↔ Enough data to distinguish them?
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Choice of states expressed as parameter uncertainty

Moderate

Death

Severe

SPLIT

Moderate /
Severe

Death

MERGED

Moderate

Death

Severe

CONSTRAINED

CONSTRAINED: risk of death λ whether in medium or high

I Same survival distribution as MERGED

I → practically equivalent – gives same answer of interest
I even though theoretically different

I different sample space / likelihood

Can compare SPLIT vs CONSTRAINED by standard methods
(DIC, AIC, Bayes factors, shrinkage. . .)
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Conclusions: structural uncertainty

I If different plausible structures give different answers
(expected cost / survival) then there’s structural uncertainty.

I conversely: if they give same answers → no uncertainty!

I Structural uncertainty can be accounted for by parameterising
the uncertainty in a bigger model

I e.g. include all potential covariates, or use very flexible
distributions

I statistical model uncertainty methods lead to posterior for
“structural” parameter(s).

I posterior expresses strength of belief / evidence for each
choice.

I Jackson et al. (2011) A framework for addressing structural uncertainty in

decision models, Med. Decis. Making 31(4).

I Choice of what evidence should be included? No good
evidence on some parameter?

I “Softer” methods important here (sensitivity analysis,
elicitation).
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