Probabilistic Sensitivity Analysis and Value of Information in Cost-Effectiveness Models

Richard Nixon

Novartis Pharma AG

June 12th, 2014

- One step parameter estimation and cost-effectiveness model
 - Set up a deterministic health economic model
 - Estimate parameters and "Push through" the uncertainty in the parameters underpinning this model by Monte Carlo simulation
- This generates the distribution of the population mean effectiveness and population mean cost in each arm
 - $\blacktriangleright \mathbb{E}[f(\theta)] \neq f(\mathbb{E}[\theta])$
- We use these distributions to find
 - Incremental cost-effectiveness ratio
 - Incremental net benefit
 - Cost effectiveness acceptability curves
- We calculate the value of reducing the uncertainty in the parameters
 - Expected value of perfect information
 - Expected value of perfect partial information

- Evaluate a new chemotherapy drug against the standard of care
- Following treatment, a patient may experience haematological side effects
- If this does happen, depending on the severity, the patient either needs ambulatory care, or is admitted to hospital
- Costs to include: Drug costs, cost of ambulatory care, cost of hospital
- Effect: Being free of side effects

Components of Decision Quality¹

- What we can do?
 - t is the set of interventions
 - Decide to use standard-or-care or new treatment (t = 1, 2)
- What we know?
 - Statistically these are the random variables
 - > θ : parameters describing disease model, costs and effects
 - e and c are the observable outcomes
 - $\mu_t^e = \mathbb{E}[e|\theta, t]$ and $\mu_t^c = \mathbb{E}[c|\theta, t]$ are population mean cost and effect given intervention *t*.

What we want?

- The value of the outcomes measured by utility
- We chose the net (monetary) benefit u(e, c; t) = ke - c k is the willingness-to-pay for one unit of effectivness.
- Chose intervention *t* with the highest expected net benefit $\mathbb{E}[\mathbb{E}[u(e, c; t)]] = \mathbb{E}[k\mu_t^e \mu_t^c]$

¹Ron Howard. The Foundations of Decision Analysis Revisited, in Advances in Decision Analysis 2007.

Decision tree model

We have data from a clinical study

Parameter	Value	Description
N ^{pat}	111	Number of patients in observed data
N ^{se}	27	Number of patients with side effects,
		given standard-of-care
N ^{amb}	17	Number of patient with ambulatory care following
		side effect, given standard-or-care
$\mu_{ ho}$	0.8	Mean probability of side effect given new treatment
-		compared to standard-of-care
$\sigma_{ ho}$	0.2	SE of probability of side effect given new treatment
		compared to standard-of-care

Disease model analysis

Probability of side effects $N^{\rm se} \sim {\rm Binomial}(\pi_1, N^{\rm pat})$ sampling distribution $\pi_1 \sim \text{Beta}(1,1)$ prior distribution $\rho \sim \operatorname{Normal}(\mu_{\rho}, \sigma_{\rho}^2)$ Reduction in the occurrence of side effects $\pi_2 = \rho \pi_1$ Treatment of side effects $N^{\text{amb}} \sim \text{Binomial}(\gamma, N^{\text{se}})$ sampling distribution $\gamma \sim \text{Beta}(1,1)$ prior distribution num.se ~ dbin(pi[1], num.pat) pi[1] ~ dbeta(1, 1) rho ~ dnorm(m.rho, tau.rho) pi[2] <- rho * pi[1] num.amb ~ dbin(gamma, num.se) gamma ~ dbeta(1, 1)

Parameter	Distribution	Description	Mean cost
c ^{amb}	logNormal(4.77, 0.17)	Ambulatory care	120
C ^{nosp}	logNormal(8.60, 0.18)	Hospital	5483
$c_1^{ m drug}$	110	Cost of standard-of-care	
$c_2^{ m drug}$	520	Cost of new drug	

c.amb ~ dlnorm(m.amb, tau.amb) # Cost of ambulatory care c.hosp ~ dlnorm(m.hosp, tau.hosp) # Cost of hospitalization

The drug costs are part of the data set list(c.drug = c(110, 520))

Cost-effectiveness plane

k is the amount one is willing to pay for one unit of effectiveness

The ICER is the mean incremental cost divided by the mean incremental effect

 $\Delta_e = \mu_2^e - \mu_1^e$ Expected incremental effects $\Delta_c = \mu_2^c - \mu_1^c$ Expected incremental costs

ICER =
$$\frac{\mathbb{E}[\Delta_c]}{\mathbb{E}[\Delta_e]}$$

WARNING!

- ► The ICER cannot be interpreted without knowing the position of Δ_e and Δ_c on the CE plane
- The ICER is not a properly ordered statistic for negative values (e.g. -100/100 is better than -100/50 is better than -50/50 in terms of decision making, but these ratios are -1, -2, -1)

Translate effects onto the cost scale and subtract costs

$$\blacktriangleright \mathsf{INB}(\theta, \mathsf{k}) = \mathsf{k}\Delta_{\theta} - \Delta_{c}$$

- k is the amount one is willing to pay for one unit of effectiveness
- ▶ If INB(θ , k)>0 then the new treatment is cost effective
- We can plot the expected INB and its 95% CI for different values of K
- ► The break-even point occurs at E[∆_c]/E[∆_e]. (Although it is possible the INB is always positive or negative)

Incremental Net (Monetary) Benefit

- To quantify decision uncertainty consider the probability that INB(K) is positive
- ► $Q(k) = P(INB(k)>0)=P(k\Delta_e \Delta_c > 0)$
- This is the cost-effectiveness acceptability curve (CEAC)
- Imagine a line on the cost-effectiveness plane going thought the origin and with gradient k. The value of Q(k) is the area under the line.
- (Actually Q(k) is the volume to one side of a plane bisecting the probability density function of costs and effects)

Cost Effectiveness Acceptability Curve


```
## incremental cost/effectiveness ratio
delta.e <- mu.e[2] - mu.e[1]
delta.c <- mu.c[2] - mu.c[1]
## CEAC curves
k.space <- 5000
for(j in 1:11){
    k[j]<- (j-1) * k.space
    INB[j] <- K[j] * delta.e - delta.c</pre>
    Q[j] <- step( INB[j] )
}
```

- Consider a simpler model where:
 - The only uncertain parameter is the probability of side effects π given SoC
 - We have a discrete distribution for this

$$P(\pi = 0.25) = 0.5$$

 $P(\pi = 0.35) = 0.5$

- All patients with a side effect are treated the same way, and this costs 2000
- The new treatment has the highest expected net benefit (when WTP = 5000)
 - $\blacktriangleright \max_t \mathbb{E}[NB(\pi; t)] = 2800$
- Suppose that we know that $\pi = 0.25$
- Now the SoC has the highest net benefit

• $\max_t NB(\pi, t) = 3140$

For the value of knowing π exactly is the difference between these

NB $(1 - \pi_t)k - (c^{drug} + \pi_t c^{amb})$

NB $(1 - \pi_t)k - (c^{drug} + \pi_t c^{amb})$

NB $(1 - \pi_t)k - (c^{drug} + \pi_t c^{amb})$

- Perfect information is a hypothetical concept as we don't know the parameter value when deciding to buy it.
- \blacktriangleright Instead we find the expected NB, averaging over the possible values of π
 - $\blacktriangleright \mathbb{E}_{\pi}[\max_{t} NB(\pi, t)]$
- ► The expected value of knowing this infomation is $\mathbb{E}_{\pi}[\max_{t} NB(\pi; t)] \max_{t} \mathbb{E}_{\pi}(NB(\pi; t)]$
- This is called the Expected Value of Perfect Information (EVPI)
- Note that, if for every value of π we don't change the treatment decisison, then the EVPI is zero

Golden rule of Value of Information

Information only has value if it changes your decision

NB $(1 - \pi_t)k - (c^{drug} + \pi_t c^{amb})$

NB $(1 - \pi_t)k - (c^{drug} + \pi_t c^{amb})$

NB $(1 - \pi_t)k - (c^{drug} + \pi_t c^{amb})$

Richard Nixon PSA and Vol in Cost-Effectiveness Models

.

.

How to estimate EVPI by simulation

Decide to not buy information

1) Simulate a set of parameters $\theta = \theta_1, \ldots, \theta_I$

2) For each treatment $t_k = t_1, \ldots, t_K$

a) Find utility of treatment t_k for each θ_i . $u(\theta_i, t_k)$

b) Estimate $\mathbb{E}_{\theta}[u(\theta, t_k)]$ by the mean over *i* of $u(\theta_i, t_k)$

3) The value of the decision is $\max_t \mathbb{E}_{\theta} [u(\theta, t)]$

Decision to buy information

1) Simulate a set of parameters $\theta = \theta_1, \ldots, \theta_I$

2) For each parameter θ_i

a) Find utility of θ_i for each treatment $t_k = t_1, \ldots, t_K$. $u(\theta_i, t_k)$

b) Choose treatment t^* that is max_t $u(\theta_i, t_k)$

3) Value of decision is $\mathbb{E}_{\theta} [\max_{t} u(\theta, t)]$ which is estimated by the mean over *i* of $\max_{t} u(\theta_i, t^*)$

$$EVPI = \mathbb{E}_{\theta} \left[\max_{t} u(\theta; t) \right] - \max_{t} \mathbb{E}_{\theta} \left[u(\theta; t) \right]$$

- Generally we don't want to know the value of knowing all the parameters exactly, but the value of knowing each parameter (or a group of parameters), exactly.
- Partition the parameters into two groups

 $\blacktriangleright \ \theta = (\phi, \psi)$

 \blacktriangleright We want to know the value of knowing ϕ perfectly, whilst remaining uncertain about ψ

Partition $\theta = (\phi, \psi)$

Current value

 $\max_t E_{\theta}[u(\theta, t)]$

.

θ is partitioned into (φ, ψ)
Decision to buy information on φ
1) Simulate a set of parameters φ = φ₁,..., φ_I
2) For each parameter φ_i
a) Simulate a set of parameters ψ = ψ₁,..., ψ_J
b) For each treatment t_k = t₁,..., t_K
i) Find utility of treatment t_k for each ψ_j. u(φ_i, ψ_j, t_k)
ii) Estimate E_ψ [u(φ_i, ψ, t_k)] by the mean over j of u(φ_i, ψ_j, t_k)
c) Choose treatment t* that is max_tE_ψ [u(φ_i, ψ, t_k)]
3) Value of decision is E_φ [max_t E_ψ [u(φ, ψ, t)]] which is estimated by the mean over i of E_ψ [u(φ_i, ψ, t*)]

$$EVPPI = \mathbb{E}_{\phi}\left[\max_{t} \mathbb{E}_{\psi}\left[u(\phi, \psi; t)\right]\right] - \max_{t} \mathbb{E}_{\theta}\left[u(\theta; t)\right]$$

How to estimate EVPPI by simulation

- This algorithm is extremely computationally intensive
- For every simulated value of ϕ , we have to simulate a set of ψ 's
- And then repeat this for every parameter, and every WTP threshold
- This means this algorithm is practically infeasible, so approximations have been developed²
- These algorithms only need a single set of parameter values, and the corresponding utility values for each treatment
- This is exactly what we get when simulating the expected NB for each treatment in BUGS

Simulation	π_1	ρ	γ	$c^{ m amb}$	$c^{ m hosp}$	NB ₁	NB_2
1	0.15	0.73	0.62	106	5 410	3 654 900	4 049 100
2	0.23	0.78	0.57	146	4 705	3 259 200	3 134 300
3	0.28	0.72	0.65	113	5 858	3 095 200	3 041 100
4	0.27	0.74	0.62	99	6 448	2 588 300	2 755 000
5	0.24	0.89	0.44	107	5 225	2 968 300	2 778 000

²Strong and Oakley (2013). Sadatsafavi et al. (2013).

EVPPI plot

- The greatest value in reducing parameter uncertainty are from the parameters
 - ρ Probability of side effect given new treatment compared to SoC
 - π_1 Probability of side effect given SoC
- There is relatively little value in reducing the uncertainty in the other parameters

Appling value of information in a pharmaceutical contex

- From a public policy perspective total Net benefit in the population is an appropriate utility measure.
 - Net benefit = population size x (QALY x WTP Cost)
- From an industry perspective it is an investment decision so eNPV is an appropriate utility measure.
 - eNPV = NPV | reimbursed x p(reimbursed)
 - p(reimbursed) = p(registered) x p(reimbursed | registered)
 - p(reimbursed | registered) = p(INB > 0)
- Sum over all countries with value based pricing.
- This will also give the value of information for parameters in the market model needed to estimate the NPV.