

Reducing the Sample Size of Diagnostic-Biomarker-Validation Designs by a Bayesian Framework

L. Garcia Barrado¹ E. Coart² T. Burzykowski^{1,2}

¹Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-Biostat)

²International Drug Development Institute (IDDI)

Outline

Problem setting

Accuracy definition
Index definition
Incorporating pre-validation information

Bayesian framework

Development stage Validation stage Information transfer

Simulation study

Settings Results

Conclusions

Outline

Problem setting

Accuracy definition
Index definition
Incorporating pre-validation information

Bayesian framework

Development stage Validation stage Information transfer

Simulation study

Settings Results

Conclusions

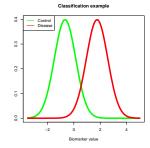
Problem setting

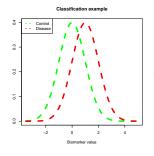
Develop a diagnostic biomarker-index and efficiently validate its accuracy

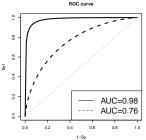
- Area under the Receiver Operating Characteristics (ROC) curve (AUC) as measure of accuracy
- Define index as linear combination of biomarkers maximizing AUC
- Incorporate information from development to validation stage

=> To this end a Bayesian framework will be proposed

Area under the Receiver Operating Characteristics curve







Data assumptions and notation

Underlying true biomarker distribution

- Mixture of two K-variate normal distributions by true disease status (D)
 - $ightharpoonup |\mathbf{Y}|_{D=0} \sim N_{\mathcal{K}}(oldsymbol{\mu}_0, oldsymbol{\Sigma}_0)$
 - $ightharpoonup |\mathbf{Y}|_{D=1} \sim N_K(oldsymbol{\mu}_1, oldsymbol{\Sigma}_1)$
- Reference test (T) is imperfect
 - Se: Unknown sensitivity of the reference test
 - Sp: Unknown specificity of the reference test
 - Conditionally on true disease status, misclassification independent of biomarker value
- \triangleright θ : Unknown true prevalence of disease in the data set
- Assume for the rest of the presentation K=3

Definintion of biomarker-index

Linear combination maximizing AUC of the form*:

$$egin{aligned} \mathbf{a'Y}|_{\mathit{D}=0} &\sim \mathit{N}(\mathbf{a'}\mu_0,\mathbf{a'}oldsymbol{\Sigma_0}\mathbf{a}) \ \mathbf{a'Y}|_{\mathit{D}=1} &\sim \mathit{N}(\mathbf{a'}\mu_1,\mathbf{a'}oldsymbol{\Sigma_1}\mathbf{a}) \end{aligned}$$

For which:

a'
$$\propto (\mathbf{\Sigma}_0 + \mathbf{\Sigma}_1)^{-1} (\mu_1 - \mu_0)$$

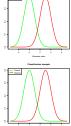
Area Under the ROC Curve:

$$extit{AUC}_{ extit{Index}} = \Phi \left\{ \left[(oldsymbol{\mu}_{ extsf{1}} - oldsymbol{\mu}_{ extsf{0}})'(oldsymbol{\Sigma}_{ extsf{0}} + oldsymbol{\Sigma}_{ extsf{1}})^{-1}(oldsymbol{\mu}_{ extsf{1}} - oldsymbol{\mu}_{ extsf{0}})
ight]^{rac{1}{2}}
ight\}$$

*Siu, J.Q., and Liu, J.S. (1993)

Development

Data



Results

Incorporating pre-validation information

Development

Validation

Data

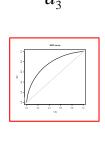
<u>Results</u>

<u>Data</u>

<u>Results</u>

Incorporating pre-validation information

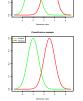
Validation



Results

Data

Results



Outline

Problem setting

Accuracy definition
Index definition
Incorporating pre-validation information

Bayesian framework

Development stage Validation stage Information transfer

Simulation study

Settings Results

Conclusions

Bayesian latent-class mixture model

Full data likelihood

$$\begin{split} &L(\boldsymbol{\mu}_0, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_0, \boldsymbol{\Sigma}_1, \boldsymbol{\theta}, Se, Sp|\mathbf{Y}, \mathbf{T}, \mathbf{D}) \\ &= \prod_{i=1}^N \left(\boldsymbol{\theta} Se^{t_i} (1 - Se)^{(1-t_i)} \frac{1}{\sqrt{2\pi|\boldsymbol{\Sigma}_1|}} \times \textit{EXP} \left\{ -\frac{1}{2} \left(\mathbf{Y}_i - \boldsymbol{\mu}_1 \right)' \boldsymbol{\Sigma}_1^{-1} \left(\mathbf{Y}_i - \boldsymbol{\mu}_1 \right) \right\} \right)^{d_i} \\ &\times \left((1 - \boldsymbol{\theta}) (1 - Sp)^{t_i} Sp^{(1-t_i)} \frac{1}{\sqrt{2\pi|\boldsymbol{\Sigma}_0|}} \times \textit{EXP} \left\{ -\frac{1}{2} \left(\mathbf{Y}_i - \boldsymbol{\mu}_0 \right)' \boldsymbol{\Sigma}_0^{-1} \left(\mathbf{Y}_i - \boldsymbol{\mu}_0 \right) \right\} \right)^{(1-d_i)} \end{split}$$

└ Development stage

Prior distributions

Hyperprior

 $\theta \sim \text{Uniform}(0.1,0.9)$

Priors

$$D_i \sim \text{Bernoulli}(\theta)$$

Se = Sp \sim Beta(1,1)T(0.51, ∞)

(Observation i: 1,...,N)

Prior distributions

Set
$$\Sigma_i = V_i R_i V_i^*$$

For: $V_j = \sigma_{k,j}I_3$ and R_j is a correlation matrix.

Then:
$$\mathbf{C}_j = \begin{pmatrix} 1 & c_{j,12} & c_{j,13} \\ 0 & c_{j,22} & c_{j,23} \\ 0 & 0 & c_{j,33} \end{pmatrix}$$
 = Cholesky factor of \mathbf{R}_j .

$$\sigma_{k,j} \sim \mathsf{Uniform}(\mathsf{0,1000})$$

$$c_{j,12} = \rho_{j,12} \sim \text{Uniform(-1,1)}$$
 $c_{j,13} = \rho_{j,13} \sim \text{Uniform(-1,1)}$
 $c_{j,23} \sim \text{Uniform}\left(-\sqrt{1-\rho_{j,13}^2}, \sqrt{1-\rho_{j,13}^2}\right)$

$$\rho_{j,23} = \rho_{j,12}\rho_{j,13} + c_{j,22}c_{j,23}$$

* Wei, Y and Higgins, J.P.T (2013)

Prior distributions

$$\textit{AUC}_{\textit{Index}} = \Phi \left\{ \left[(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)' (\boldsymbol{\Sigma}_0 + \boldsymbol{\Sigma}_1)^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0) \right]^{\frac{1}{2}} \right\}$$

Reparameterize:

$$egin{aligned} &AUC_{\textit{Index}} = \Phi \left\{ \sqrt{m{\Delta}' m{\Delta}}
ight\} \ & ext{Where } m{\Delta} = m{L}(\mu_1 - \mu_0) \ & ext{For } m{L} = ext{the Cholesky factor of } (m{\Sigma}_0 + m{\Sigma}_1)^{-1} \end{aligned}$$

Priors

$$egin{aligned} oldsymbol{\Delta} &\sim \emph{N}_{3}(\kappa, \Psi) \ \mu_{0\emph{k}} &\sim \emph{N}(0, 10^{6}) \ \ (\emph{k: 1,...,3}) \ oldsymbol{\mu}_{1} &= oldsymbol{\Delta} \emph{L}^{-1} + oldsymbol{\mu}_{0} \end{aligned}$$

Bayesian latent-class mixture model

$$\mathbf{Y}_{\mathit{Index}} = \hat{\mathbf{a}}' \mathbf{Y}_{\mathit{Val}}$$

(Biomarker index observations)

Full data likelihood

$$\begin{split} &L(\mu_0, \mu_1, \sigma_0, \sigma_1, \theta, \textit{Se}, \textit{Sp}|\mathbf{Y}_{\textit{Index}}, \mathbf{T}_{\textit{Val}}, \mathbf{D}_{\textit{Val}}) \\ &= \prod_{i=1}^{\textit{N}} \left(\theta \textit{Se}^{\textit{I}_{\textit{Val}_i}} (1 - \textit{Se})^{(1 - \textit{I}_{\textit{Val}_i})} \frac{1}{\sqrt{2\pi\sigma_1^2}} \times \textit{EXP}\left\{-\frac{(Y_{\textit{Index}_i} - \mu_1)^2}{\sigma_1^2}\right\}\right)^{\textit{d}_{\textit{Val}_i}} \\ &\times \left((1 - \theta)(1 - \textit{Sp})^{\textit{I}_{\textit{Val}_i}} \textit{Sp}^{(1 - \textit{I}_{\textit{Val}_i})} \frac{1}{\sqrt{2\pi\sigma_0^2}} \times \textit{EXP}\left\{-\frac{(Y_{\textit{Index}_i} - \mu_0)^2}{\sigma_0^2}\right\}\right)^{(1 - \textit{d}_{\textit{Val}_i})} \end{split}$$

└─ Validation stage

Prior distributions

Hyperprior

 $\theta \sim \text{Uniform}(0.1,0.9)$

Priors

 $D_i \sim \text{Bernoulli}(\theta)$

(Observation i: 1,...,N)

Se = Sp \sim Beta(1,1)T(0.51, ∞) $\sigma_i \sim$ Uniform(0,1000)

[j:0,1]

Prior distributions

$$extit{AUC}_{ extit{Index}} = \Phi \left\{ rac{(\mu_1 - \mu_0)}{\sqrt{\sigma_0^2 + \sigma_1^2}}
ight\}$$

Reparameterize:

$$AUC_{Index} = \Phi \left\{ \gamma \right\}$$
 Where $\gamma = \frac{(\mu_1 - \mu_0)}{\sqrt{\sigma_0^2 + \sigma_1^2}}$

Priors

$$\gamma \sim N(\lambda, \tau^2)$$

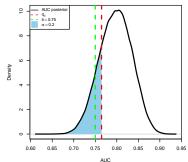
$$\mu_0 \sim N(0, 10^6)$$

$$\mu_1 = \gamma \times \sqrt{\sigma_0^2 + \sigma_1^2} + \mu_0$$

Validation criterion

Based on Bayesian hypothesis testing paradigm:

 $H_0: AUC \leq \delta$ $H_1: AUC > \delta$



Consider result significant when posterior probability of AUC exceeding δ is larger than 1 $-\alpha$.

Incorporate pre-validation information

$$\begin{array}{ll} \textbf{Development} & \textbf{Validation} \\ \phi^{-1} \left\{ \textit{AUC}_{\textit{Index}} \right\} = \sqrt{\Delta' \Delta} & \approx & \gamma = \phi^{-1} \left\{ \textit{AUC}_{\textit{Index}} \right\} \end{array}$$

Take approximation to posterior distribution of $\sqrt{\Delta'\Delta}$ as prior distribution for γ

Incorporate pre-validation information

$$\begin{array}{ll} \textbf{Development} & \textbf{Validation} \\ \phi^{-1} \left\{ \textit{AUC}_{\textit{Index}} \right\} = \sqrt{\Delta' \Delta} & \approx & \gamma = \phi^{-1} \left\{ \textit{AUC}_{\textit{Index}} \right\} \end{array}$$

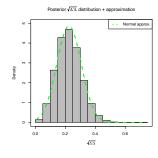
Take approximation to posterior distribution of $\sqrt{\Delta'\Delta}$ as prior distribution for γ

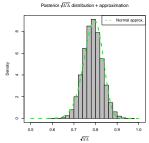
$\sqrt{\Delta'\Delta}$ posterior approximation

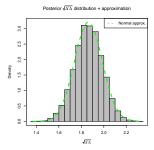
Prior: $\gamma \sim N(\lambda, \tau^2)$

Where
$$\lambda=\overline{\mathbf{x}}_{\sqrt{\Delta'\Delta}_{1:M}}$$
, and $\tau^2=\mathbf{s}_{\sqrt{\Delta'\Delta}_{1:M}}^2$

(For M MCMC samples)







Outline

Problem setting

Accuracy definition

Incorporating pre-validation information

Bayesian framework

Development stage Validation stage

Information transfer

Simulation study

Settings

Results

Conclusions

GOAL

Establish difference in power to validate AUC of biomarker index when ignoring vs incorporating pre-validation information

For 3 correlated biomarkers

$$\theta = 0.5$$

$$Se = Sp = 0.85$$

Mixture component parameters set such that:

AUC of biomarker 1 = 0.75

AUC of biomarker 2 = 0.75

AUC of biomarker 3 = 0.75

$$AUC_{Index} = 0.78$$

Development Stage

- $N_{Dev} = 400$
- $\hat{\mathbf{a}}'$ = posterior median of \mathbf{a}'

Validation Stage

- ightharpoonup 200 data sets for $N_{Val} = 100, 400, 600, and 800$
- Power = proportion of simulations for which P(AUC > 0.75|data) > 0.80
- Prior AUC information:

- ► Ignoring AUC information (Red)
 - Prior $\gamma: N(0,1)$
- ► Incorporating AUC information (Blue)
 - Prior γ : Discounted normal approx. to posterior predictive distribution of $\sqrt{\Delta'\Delta}$

Development Stage

- $N_{Dev} = 400$
- $\hat{\mathbf{a}}'$ = posterior median of \mathbf{a}'

Validation Stage

- ▶ 200 data sets for $N_{Val} = 100, 400, 600, and 800$
- Power = proportion of simulations for which P(AUC > 0.75|data) > 0.80
- Prior AUC information:

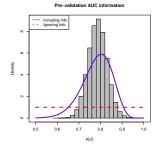
- ► Ignoring AUC information (Red)
 - Prior $\gamma: N(0,1)$
- ► Incorporating AUC information (Blue)
 - Prior γ : Discounted normal approx. to posterior predictive distribution of $\sqrt{\Delta'\Delta}$

Development Stage

- $N_{Dev} = 400$
- $\hat{\mathbf{a}}'$ = posterior median of \mathbf{a}'

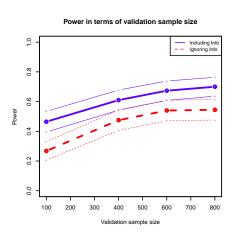
Validation Stage

- ▶ 200 data sets for *N_{Val}* = 100, 400, 600, and 800
- Power = proportion of simulations for which P(AUC > 0.75|data) > 0.80
- Prior AUC information:



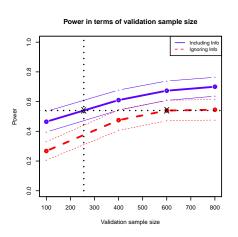
- Ignoring AUC information (Red)
 - Prior $\gamma: N(0,1)$
- Incorporating AUC information (Blue)
 - Prior γ : Discounted normal approx. to posterior predictive distribution of $\sqrt{\Delta'\Delta}$

Simulated Power



- Increasing validation sample size increases power
- Incorporating pre-validation information significantly increases power
- ▶ Reduction of about ½ of sample size to maintain power

Simulated Power



- Increasing validation sample size increases power
- Incorporating pre-validation information significantly increases power
- Reduction of about ¹/₂ of sample size to maintain power

Outline

Problem setting

Accuracy definition

Index definition

Incorporating pre-validation information

Bayesian framework

Development stage

Validation stage

Simulation study

Settings

Conclusions

Conclusions

- Bayesian framework:
 - Allows including pre-validation information into validation stage
 - By approximating posterior AUC information as prior
 - Also other pre-validation information possible
- Simulation study
 - Power to reach validation is significantly increased
 - Sample size reduction for equal power

Further considerations

- Other validation criteria
- Robustness to miss-estimated linear combination coefficients
- Extend to incorporate non-normally distributed biomarkers
- Evaluate impact of conditional independence assumption

References

- Su, J.Q., Liu, J.S.: Linear combinations of multiple diagnostic markers.
 Journal of the American Statistical Association. 88, 1350–1355 (1993)
- Wei, Y, Higgins, P.T.: Bayesian multivariate meta-analysis with multiple outcomes. Statistics in Medicine (2013) doi: 10.1002/sim.5745

- Conclusions

Thank you for your attention!