

A bayesian framework for conducting effective bridging between references under uncertainty

Contact: Jean-François Michiels, Statistician

Jean-francois.michiels@arlenda.com

- Vaccines batches potency should be evaluated before being released in the market (in order to ensure their biological efficiency)
- A specific bioassay is used to evaluate the relative potency (RP) of batches. A reference batch is needed.
- Problem:
 - Commercial life of a vaccine = 30 years
 - A reference should be changed every 3-4 years (out of stock or storage)

How to choose the new reference batch ?

- 2 strategies are possible
 - Choose a new reference that is as close as possible to the previous reference
 - Choose randomly a new reference batch
 - compute a corrective factor (=cf) between the 2 references, using a bridging strategy
 - Cf= log(potency ref2)/log(potency ref1)
 - The bioassay is performed using the new reference batch
 - The RP of batches is computed using the new reference
 - Use the corrective factor to obtain the RP of batches as if they were measured using the primary reference (*i.e.* the very first reference).

Question

How to compute this corrective factor (=cf)?

Properties of the cf:

- The cf is estimated with some uncertainty because it relies on limited data (a limited number of experiments are used to compare both references).
- As the number of bridging increases, corrective factors are applied successively to correct the RP, as it was measured against the primary reference. There exists a risk that the corrected RP deviates from the true RP

Using simulation,

- Possible to follow the true RP and the RP obtained after correction

Simulation structure

- Simulate fake potency data
 - for batches and references evaluated routinely (\rightarrow RP can be computed)
 - for references during a bridging step (\rightarrow cf can be computed)
- Obtain RP of batches against the current reference
- Compute corrective factors and correct the RP
- Obtain the true RP (known during simulation)
- Compare the corrected RP with the true RP
- Criteria:
 - Probabilities to accept a batch
 - Bias between the corrected and the true RP

Details for simulation of data (1)

- Inputs: fixed and random intercepts; Residual
- References are batches, intended for special use
 - Same sources of variability and same values
- Loop 1 (generate p references)
 - True_ref = fixed int + random intercept
 - Loop 2 (generate m batches to be compared to true Ref)

True_batch = fixed int + random intercept

Observed_batch = N(True_batch, precision) # n times

Observed_ref = N(True_ref, precision) # n times

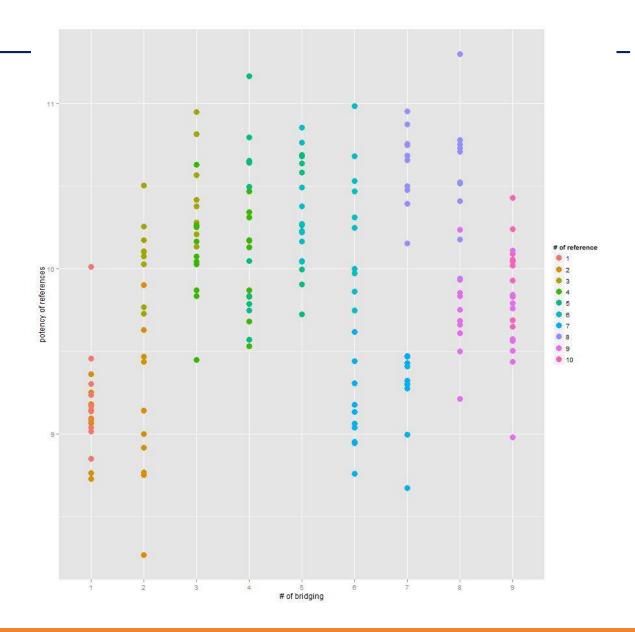
- End loop 2
- End loop 1

- Routine data

Logtransformed potencies are generated

Copy paste the true primary reference (to be able to have the true RP)

- In practice, specific data are gathered for the bridging
 - To compare old and new references
- True reference values are known by simulation
- bridging data~N(True_ref,precision)



Simulation endpoints

- True_RP = exp(True_batch True_primary_ref)
- Corrected_RP = exp(observed_batch Observed_reference) * cf
- **Bias** = log(Corrected_RP) log(True_RP)
- Prob_to_accept_batch : compare the corrected_RP to a lower and upper specification

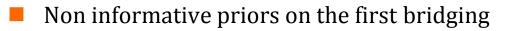
Methodologies to compute the cf

- On each bridging step without updates of priors
- On each bridging step with updates of priors
- Global bridging model

By bridging step without updates of the priors

- Observed_ref1 ~ N(mean= μ_{ref1} , variance=var_{ref})
- Observed_ref2 ~ N(mean= μ_{ref2} , variance=var_{ref})
- Priors on
 - $\mu_{ref1} \sim N(mean=0, var=10000)$
 - $\mu_{ref2} \sim N(mean=0, var=10000)$
 - $var_{ref} \sim U(0, 100000)$
- Obtain cf=exp($\mu_{ref2} \mu_{ref1}$)
- Repeat this for all the bridging and combine the cf to correct the RP as it was measured against the primary reference (and not only against the previous reference)

By bridging with updates of the priors



- Extract the posteriors
 - Mean and variance of the second reference → to be used as prior of the same reference for the next bridging
 - − Mean and variance of var_{ref} → to be used as prior of var_{ref} for the next bridging (gamma distribution to be informative)

shape= mean^2/variance and rate=mean/variance (rate = inverse scale)

- Observed_ref1 ~ N(mean= μ_{ref1} , variance=var_{ref})
- Observed_ref2 ~ N(mean= μ_{ref2} , variance=var_{ref})
- Priors (some informative and some non-informative) on
 - $\mu_{ref1} \sim N(mean=prior_{\mu_{ref}}, var=prior_{var_{ref}})$
 - $\mu_{ref2} \sim N(mean=0, var=10000)$
 - Var_{ref}~ Gamma(shape=s, rate=r)
- Obtain cf as previously: cf =exp($\mu_{ref2} \mu_{ref1}$)

Repeat this for all the bridging except the first one

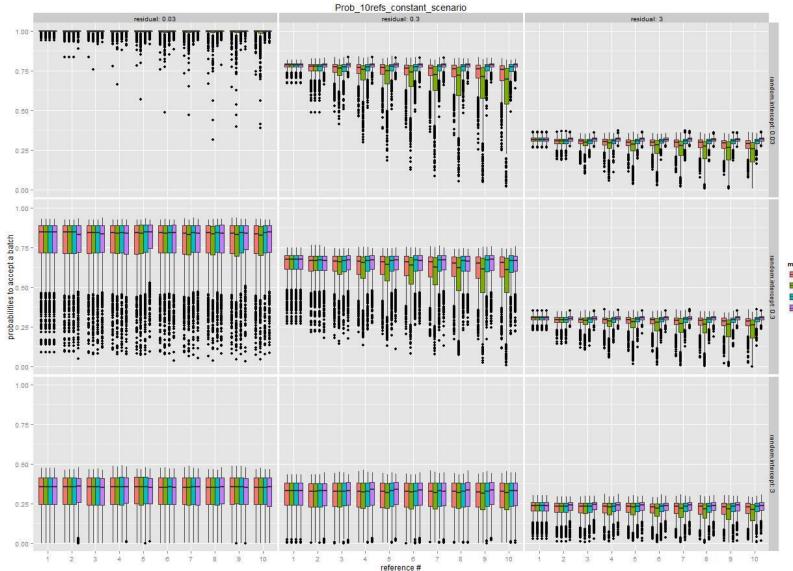
Global bridging model

Ref1	Ref2	Ref3	Ref4	Ref5	Ref6	Ref7	
First loop); i=[1,2]						
Second lo	oop; i=[1,3]						
3rd loop;	i=[1,4]						
4th loop;	i=[1,5]						
5th loop;	i=[1,6]						
6th loop;	i=[1,7]						

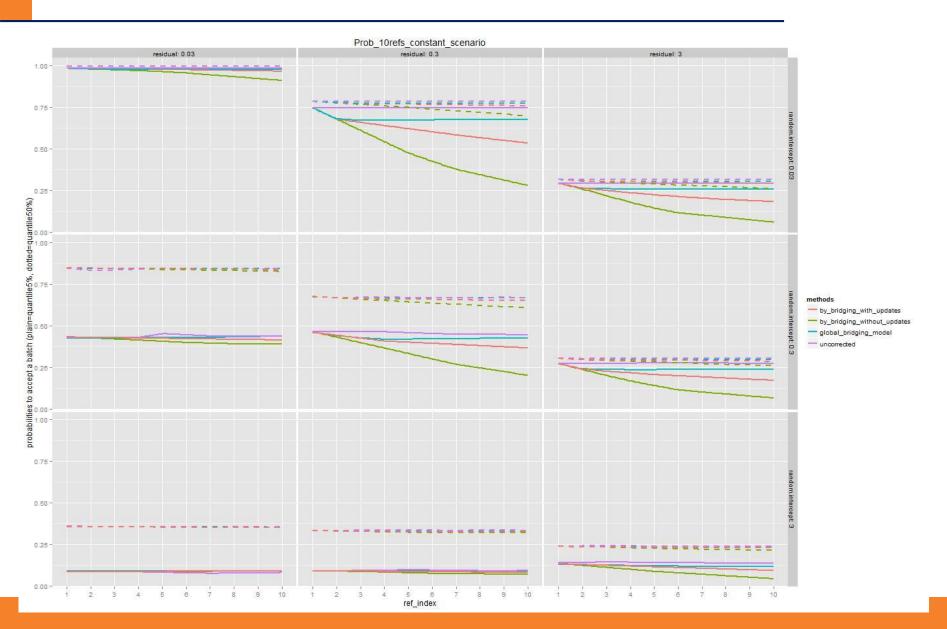
- Observed_refi ~ N(mean= μ_{refi} , variance=var_{ref})
- Priors on
 - $\mu_{refi} \sim N(mean=0, var=10000)$
 - $var_{ref} \sim U(0, 100000)$
- Obtain cf=exp($\mu_{refi} \mu_{ref1}$)
- Repeat this for all the bridging and combine the cf to correct the RP as it was measured against the primary reference (and not only against the previous reference)
- No prior, but all information of previous bridgings is included directly within the likelihood

RESULTS

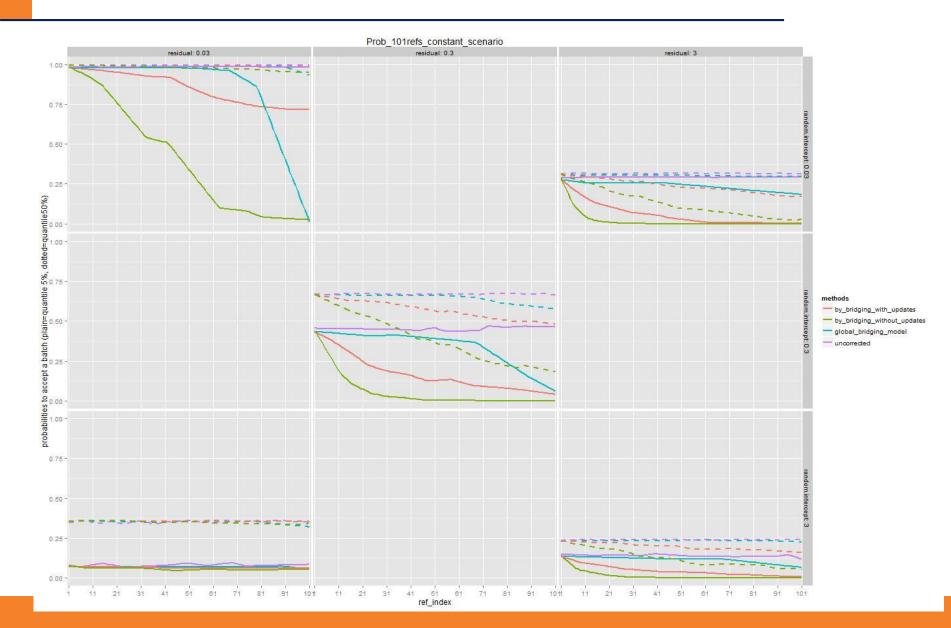
Probabilities in form of box plots



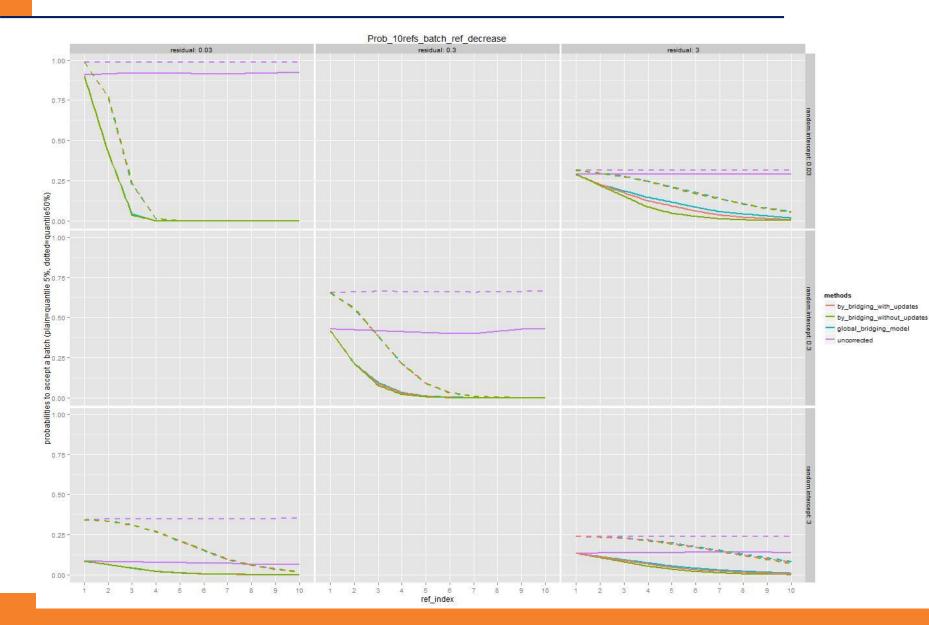
methods by_bridging_with_updates by_bridging_without_updates global_bridging_model uncorrected 10 refs



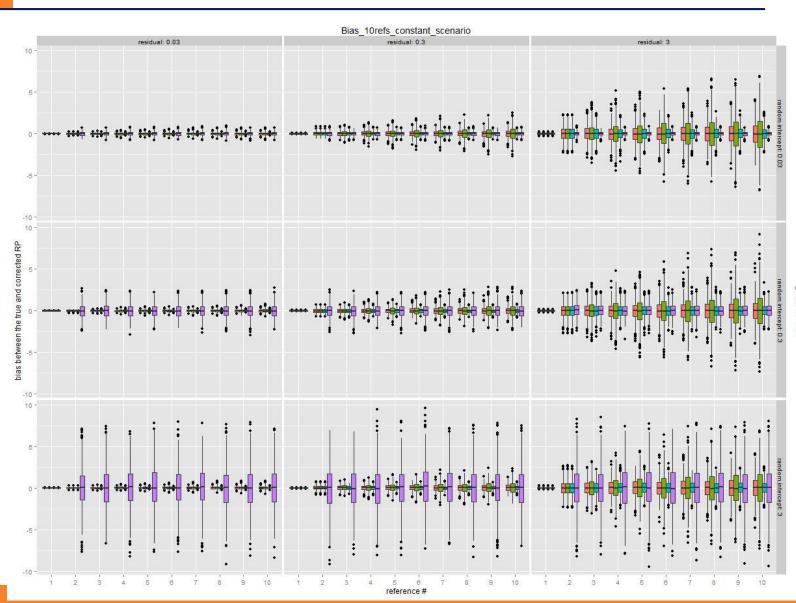
101 refs



Batches and refs decrease



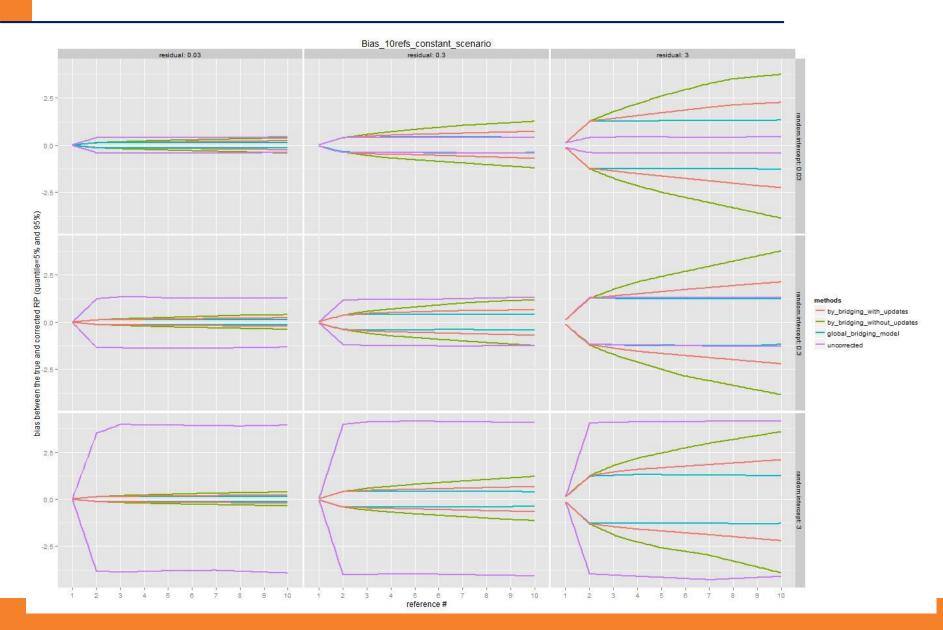
Bias



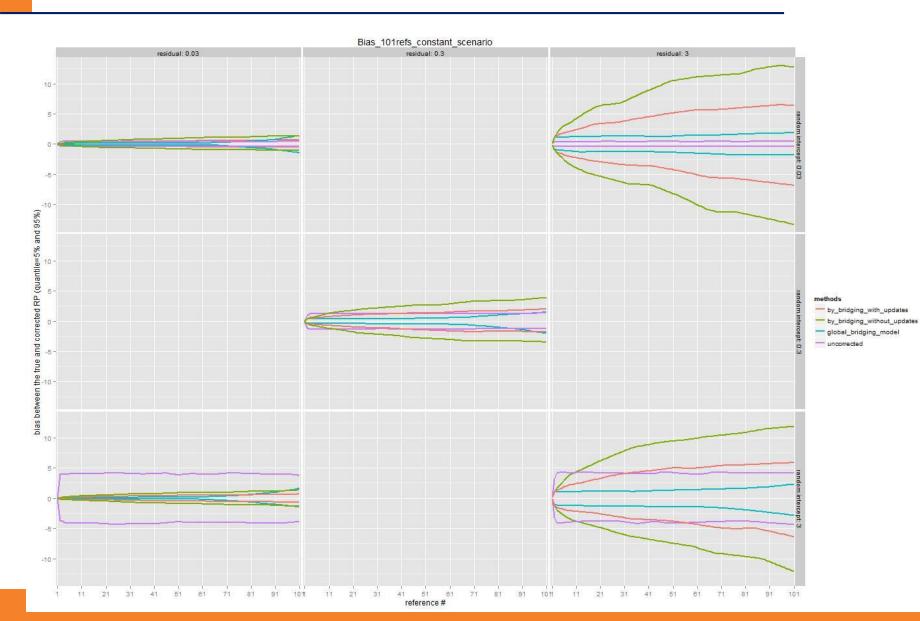
Arlenda Advance your business with statistics

> methods by_bridging_with_updates by_bridging_without_updates global_bridging_model uncorrected

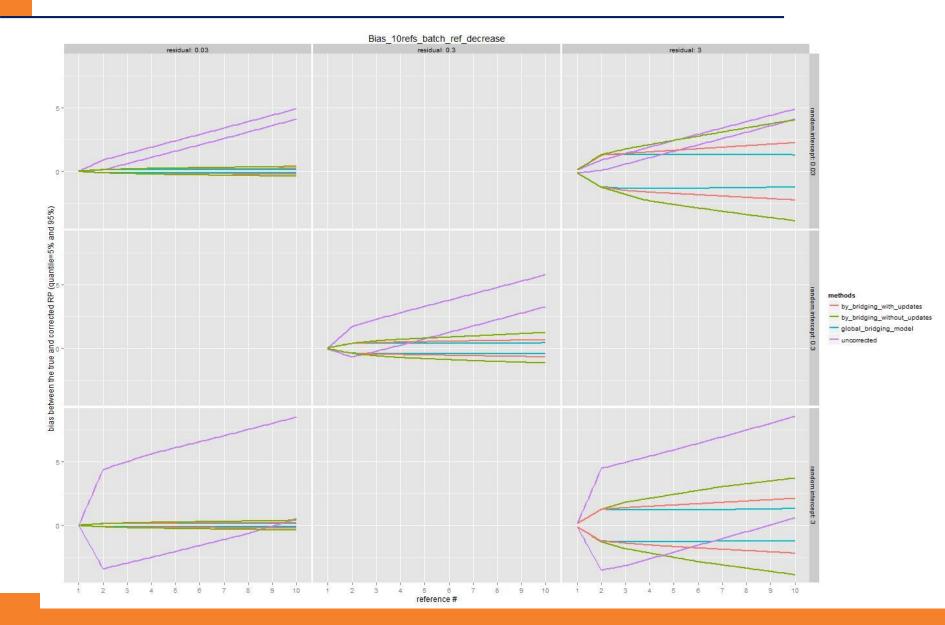
10 refs



101 refs



Batch and refs decreases



Conclusions

- Based on historical data, sources of variability can be derived and simulation based on historical data can be performed
- When sources of variability are large, it can be unnecessary to correct the RP
- 2 methods with informative priors
 - Formally updating the priors at each step
 - The priors are contained in the data and the data are injected in the model
- Such models can include in the priors information on the stability of the reference

Additionnal slides

By bridging without update of priors

proc mcmc data=&bridging_. nmc=25000 thin=5 nbi=2500 seed=0 mchistory=detailed monitor=(cf); array logmuref[2] logmuref1 logmuref2; parms logmuref1 5 ; parms logmuref2 5 ; parms precref 5; prior logmuref1~ normal(mean = 0, var = 10000); prior logmuref2~ normal(mean = 0, var = 10000); prior precref ~ uniform(0,100000); cf = 2**(logmuref2- logmuref1); model data ~ normal(logmuref[refid], prec = precref);

run; quit;

By bridging with update of priors

first bridging is the same as before

```
proc mcmc data=&bridging_.nmc=25000 thin=5 nbi=2500 seed=0
                      mchistory=detailed monitor=(cf);
                       array logmuref[2] logmuref1 logmuref2;
                       parms logmuref1 5;
                       parms logmuref2 5;
                       parms precref 5;
                       prior logmuref1~ normal(mean = 0, var = 10000);
                       prior logmuref2 \sim normal(mean = 0, var = 10000);
                       prior precref ~ uniform(0,100000);
                                                                              To be updated
                       cf = 2**(logmuref2-logmuref1);
                       model data \sim normal(logmuref[refid], prec = precref);
run;
```

quit;

By bridging with update of priors

proc mcmc data=&bridging_._&i. nmc=25000 thin=5 nbi=2500 seed=0

mchistory=detailed monitor=(cf precref logmuref2); by replicate_simulation; array logmuref[2] logmuref1 logmuref2; parms logmuref1 5 ; parms logmuref2 5 ; parms precref 5; prior logmuref1~ normal(mean = mean_logmuref, var = variance_logmuref); prior logmuref2~ normal(mean = 0, var = 10000); prior precref ~ gamma(s, iscale=r) ; cf = 2**(logmuref2- logmuref1); model data ~ normal(logmuref[refid], prec = precref); ods output postSummaries=mcmc_postsummaries_&i.;

run; quit;

Global model


```
proc mcmc data=&bridging_. nmc=25000 thin=5 nbi=2500 seed=0
mchistory=detailed monitor=(cf);
array logmuref[&j.] ;
parms logmuref: 5 ;
parms precref 5;
prior logmuref: ~ normal(mean = 0, var = 10000);
prior precref ~ uniform(0,100000);
cf = 2**(logmuref[&j.]- logmuref1);
model data ~ normal(logmuref[ref_nbr], prec = precref);
where bridging_nbr <= &i.;
ods output postSummaries=postSummaries_&i.;
```

run; quit;