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Motivation: Lower Urinary Tract Symptoms (LUTS)

Study:

Relation between Urinary Tract Infection (UTI) and LUTS

Dataset:

I patients diagnosed with UTI
(i.e. WBC≥ 1, white blood cells
count)

I all women over 18 y.o. at first
attendance visit

I yi = log(WBCi ) for
i = 1, . . . , 1341

I xi contains 34 binary indicators
(LUTS profile)
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Figure: Kernel density estimation of
log(WBC)
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Clustering and Variable (Model) Selection

Typical Medical Problem

I y = (y1, . . . , yn): individual level outcomes (response)

I X = (x1, . . . , xn) individual level profiles (covariates)

⇒ investigate the relation between y and X (e.g. yi ∼ N(xiβ, λ))

Clustering: do we expect the same relation for all i = 1, . . . , n ?

Variable Selection: if xi = (xi1, . . . , xiD), do we expect all D covariates to
affect/explain yi?
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Clustering and Variable Selection

Further Complication

One (set of) covariate(s) may be relevant in explaining the outcome
variable for a subset of patients

Cluster1

Cluster2

Cluster3

Cluster4

y x1 x2 x3 x4

⇐ Red = relevant
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Objectives

Model that performs regression analysis of y on X within

1. clusters of individuals based on both response and profiles

I patients with similar profiles should be a priori more likely to co-cluster

I predict similar responses for similar profiles

2. selecting important covariates explaining y (within each cluster)
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Model-Based Clustering

Regression model

yi | βi , λ ∼ Normal(yi | xiβi , λ)

Infinite Mixture Model

si ∈ {1, 2, . . .}: cluster assignment

y1, . . . , yn | {ψk ,βk}∞k=1, λ ∼
∞∑
k=1

ψkN(yi | xiβsi=k , λ)

I nonparametric model: unbounded number of degrees of freedom

I how to achieve this: Dirichlet Process
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Dirichlet Process

Dirichlet Process (DP): distribution over distributions (Ferguson [1973])

Stick-breaking construction (Sethuraman [1991])

If G ∼ DP(α,G0) then

G =
∞∑
k=1

ψkδβk

ψk = ξk

k−1∏
h=1

(1− ψh)

ξ1, ξ2, . . .
iid∼ Beta(1, α)

β1,β2, . . .
iid∼ G0
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Figure: Three samples from DP(α,G0).
The continuous line is G0 (standard
Gaussian). α is 1, 10 and 100 from the
left panel respectively. G is represented
by the points.
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Dirichlet Process Mixture Models (DPMM)

Infinite mixture of regressions via DPMM (Antoniak [1974]):

yi | βi ∼ Normal(yi | xiβi , λ)

βi | G ∼ G

(
=
∞∑
k=1

ψkδβk
⇒ Discrete distribution

)
G ∼ DP(α,G0)

Under G : p(βi = βi ′) > 0

I Observations share the same β ⇒ belong to the same cluster

⇒ DPMM induces a random partition of {1, . . . , n}
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Task 1: clustering with covariates information

Express the sequence ψ1, ψ2, . . . as function of x using an auxiliary model
for the covariates (e.g. Müller et al. [1996], Müller et al. [2011], etc)

I xi ’s become random with Bernoulli model

yi , xi | {βk , ζk , ψk}∞k=1 ∼
∞∑
k=1

ψkp(xi | ζk)N(yi | xiβk , λ)

Difference:

(βi , ζi ) | G ∼ G =
∞∑
k=1

ψk(δβk
× δζk )

G ∼ DP(α,G0)

with G0 = G0β × G0ζ (convenient choices are Normal and Beta)
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Task 2: variable selection

BNP models are ideal for simultaneous clustering and variable selection

Objective: select subsets of covariates most associated with the response,
allowing different subsets of covariates for different clusters

Modify G0 = G0β × G0ζ :

Spike and Slab distribution

G0β(β) =
D∏

d=1

[ωdδ0(β·d) + (1− ωd)Normal(β·d | md , τd)]

⇒ allow β to be exactly zero in some cluster

NOTE Spike and Slab priors already used for variable selection (see Kim
et al. [2009]), but not in clustering with covariates information
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Random Partition Model with Covariate Selection (RPMS)
Summary of the resulting RPMS, constructed via DPMM:

I Sampling (and auxiliary) model

yi , xi | βi , ζi ∼ Normal(yi | xiβi , λ)
D∏

d=1

Bernoulli(xid | ζid)

I Prior distribution for βi , ζi

(βi , ζi ) | G ∼ G

G ∼ DP(α,G0)

I Base measure for G0 (within-cluster-prior for β and ζ)

G0 =
D∏

d=1

{[ωdδ0(β·d) + (1− ωd) Normal(β·d | md , τd)] Beta(ζ·d | aζ , bζ)}

I Hyperprior distributions chosen for conjugacy or computational
advantages.
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Bayesian Inference

Posterior Inference

p(θ | Data) ∝ p(Data | θ)p(θ)

Efficient MCMC algorithm based on Gibbs samplers for sampling from
posteriors (auxiliary variable algorithm by Neal [2000])

Predictive Inference

p(ỹ | y ,X , x̃) =

∫
p(ỹ | x̃ ,β, ζ)dp(β, ζ | y ,X , x̃)

Obtainable in Gibbs fashion sampling from the posterior of β and ζ
integrating over the cluster allocation given the new profile x̃
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Application on WBC and LUTS

We apply RPMS to evaluate the relation between LUTS profile and level
of UTI (in terms of log(WBC):

I clustering output

I variable selection

Competitor: a model with spike and slab distribution but without a
model on the covariates (we call it SSP)
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Clustering Output – Posterior distribution of k
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Figure: Posterior distribution of the number of clusters k for RPMS and for SSP
models.

NOTE: RPMS accounts also for the variability within the covariates
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Clustering Output – Binder estimate
Minimise: L(ŝ, s) =

∑
i<i ′
(
l1 · I{ŝi 6=ŝi′}I{si=si′} + l2 · I{ŝi=ŝi′}I{si 6=si′}

)
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I urgency symptoms →
from 1 to 8

I stress incontinence
symptoms → from 9 to
14

I voiding symptoms →
from 15 to 21

I pain symptoms → from
22 to 34

Categories of symptoms (or combinations of categories) are associated to
different values β
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Variable Selection – Fixing the partition

Alternative 1 ⇒ 1− p(β∗jd = 0 | ŝ, . . .) where ŝ is the Binder estimate
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Figure: Probability of inclusion, i.e. β 6= 0, for each symptoms in the 9 biggest
clusters of the partition estimated by minimizing the Binder loss function.
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Variable Selection – Fixing the profile

Alternative 2 ⇒ fixing x̃ and check the posterior of β
e.g. x̃ : x1, x2 and x4 activated

−1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

−1 0 1 2 3 4

0
1

2
3

4
5

6
7

RPMS

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

SSP

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

p(β̃1|s̃, x̃) p(β̃2|s̃, x̃) p(β̃4|s̃, x̃)

NOTE SSP has posterior distributions independent on x̃
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Variable Selection – Effects on predictive inference
Compare posterior distributions of Brier score

Brier(q) = 1
n

∑n
i=1(f

(q)
i − y

(q)
i )2

I y
(q)
i : 1 if yi > q-th quartile, 0 otherwise

I f
(q)
i : p(ỹ > q-th quartile | y)
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Conclusions

RPMS (Barcella et al. [2015]) is a model based on a DPM of regressions
that performs simultaneously

I clustering with covariates (by modelling the covariates)

I within clusters variable selection in terms of explanatory power on y
(by spike and slab prior distribution)

The resulting method has been applied to investigate the relation between
LUTS and WBC finding:

1. LUTS categories significant in explaining levels of WBC

2. importance of the urgency symptoms

3. improved predictions of WBC levels using LUTS profile as predictor

18/20



References

Antoniak, C. E. (1974). Mixtures of dirichlet processes with applications to bayesian
nonparametric problems. The annals of statistics, pages 1152–1174.

Barcella, W., De Iorio, M., Baio, G., and Malone-Lee, J. (2015). Variable selection in covariate
dependent random partition models: an application to urinary tract infection. arXiv preprint
arXiv:1501.03537.

Blackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via pólya urn schemes. The
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The End
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