

Bayesian aggregation of average data in hierarchical models

<u>S. Weber</u>¹, A. Gelman², B. Carpenter², D. Lee², F. Y. Bois³, A. Racine¹ (1) Novartis, Basel; (2) Columbia Uni., New York; (3) Uni. de Technologie de Compiègne Bayes Pharma, 20. May 2015, Basel, Switzerland

Outline

- 1. Motivation: Trial Design with Hierarchical Models Using Patient Data **and** Data Summaries
- 2. Bayesian Aggregation of Summary Data
- 3. Example: Non-Linear Hierarchical Model

Designing a Trial with an Active Control Arm Assessing a Trial Design with Different Sources of Information

- Examples include non-inferiority and bio-similarity trials
- Test of a candidate substance against an active control
 - Candidate substance developed «in-house»
 → lots of raw data individual patient level longitudinal data
 - Active control developed «externally»
 → only data summaries publications or submission documents
- New trial will be similar to earlier trials of the active control drug, but still to some extent different

- \rightarrow meta-analysis on data summaries possible
- Allows for partial pooling
- Between-trial heterogeniety often difficult to handle
- Restricted to reported summary endpoints and designs

Drug Disease Modeling of Drug Responses Key Application is Clinical Trial Simulations (CTS) for Study Design

- Simulation of drug responses of patients over time
 - New designs can be considered (regimes/incl.+excl. criteria/...)
 - Different endpoints can be explored including time to event
- Hierarchical (population) based models commonly done
 →Requires patient-level data
- Paradox: Same disease progression, same patient population and likely similar mechanism of action, but population model describes only «in-house» drug

How to learn from published summaries of longitudinal data in the context of non-linear hierarchical models?

Semi-Mechanistic Turn-Over Models Linking Pharmacokinetics (PK) with Pharmacodynamics (PD)

- PD response R can be safety or efficacy related driven by PK effect on «PD bio-compartement»
 - Zero order «production» / first order «elimination» of response R
 - 4 variants: zero / first order inhibition / stimulation due to PK
 - Drug response with respect to reference state (placebo)
- Some regimens may lead to PK causing oscillations and hence oscillations in response

Example: Simplified «Stimulation of kⁱⁿ» Assuming Maximal Effect at All Times Allows for Analytic Solution

General turn-over model (only as ODE)

$$\frac{dR_j(t)}{dt} = k^{in}_j [1 + S_j(C_j(t))] - k^{out} R_j(t)$$

Simplification here: $C_j(t) \gg EC50 \Rightarrow S_j(C_j(t)) = E_{max_j}$ $R_{i}(t) = \alpha_{i}^{(1)} + [\alpha_{i}^{(0)} - \alpha_{i}^{(1)}] \exp(-k^{out} t).$ $-\alpha^{(1)}$ $\mathbf{0}$ $exp(-k^{out}t)$ α_{i} R Treatment Active Active, S(C(t)) = EmaxPlacebo 50 100 0 150

6 | Bayes Pharma | S. Weber et al. | 20. May 15 | Bayesian aggregation of summary data | Public

Simulated Example Data Set

50 Patients per Treatment Arm Placebo, Treatment 1 & 2

Solid line is true population
 No population differences mean

No between-trial variation

Integrating External Summary Data Data Generating Model Must be Shared at Least Partially

- External data \overline{y}' assumed to follow almost the same model
 - Populations must be comparable (or needs appropiate adjustment)
 - Variance components must be identical
 - Natural disease progression must be the same
- Statistical considerations
 - No gain to include external data if ϕ' completley unrelated to ϕ
 - If $\delta = \phi' \phi = 0$ then only precision improvement
 - Information is partially shared, i.e. few components of δ ≠ 0
 → Most interesting as scope of model expands
- Direct approach is to consider patients as latent
 → High computational burden (dimensionality increase) (see Chiu, A. W. & Bois, F.Y. 2007)

Hierarchical Model Structure

Likelihood on The Basis of Patients; only Population Posterior of Interest

Notation

Observations y from J patients at T time-points

$$y = (y_{jt}; j = 1, ..., J; t = 1, ..., T)$$

- Parameter vector separated in population $\varphi~$ and patient $\alpha~~(\varphi,\alpha)$
- Model
 - Prior

$$p(\phi, \alpha) = p(\phi) \Pi_{j=1}^{J} p(\alpha_{j} | \phi)$$

Likelihood for patient j

 $p(y_j | \alpha_j, \varphi)$

Interest is only in the marginal posterior $p(\phi|y)$

Full posterior

 $p(\phi, \alpha | \mathbf{y}) \propto p(\phi) \Pi_{j=1}^{J} p(\alpha_{j} | \phi) \Pi_{j=1}^{J} p(\mathbf{y}_{j} | \alpha_{j}, \phi)$

Approximation of the Patient Level Likelihood Key Idea is to Approximate Likelihood using Predictive of the Summary

- Approximation steps to get $p(\phi, \delta | y, \overline{y}')$
 - Full posterior if full raw data would be available $p(\phi, \delta, \alpha, \alpha'|y, y') = p(\phi, \alpha|y) p(\delta, \alpha'|\phi, y')$
 - $\propto p(\phi, \alpha | \mathbf{y}) p(\delta | \phi) \Pi_{j=1}^{J'} p(\alpha'_{j} | \phi, \delta) \Pi_{j=1}^{J'} p(\mathbf{y'}_{j} | \alpha'_{j}, \phi, \delta)$

- Approximation of patient level likelihood for the summary $\Pi_{j=1}^{J'} p\left(y'_{j} | \alpha'_{j}, \varphi, \delta\right) \approx p(\overline{y}' | \varphi, \delta)$
- Approximated posterior of interest is a reweighted posterior from the first inference (just like any Bayesian inference)
 p(φ, δ|y, ȳ') ∝ p(φ|y) p(δ|φ) p(ȳ'|φ, δ)
- Key idea: Replace patient likelihood by probability model of external summary given by the predictive

Simulation Based Importance Weights

Central Limit Theorem Justifies a Multivariate Normal Approximation

- 1. Obtain S draws ϕ^s from $p(\phi|y)$
- 2. For each draw ϕ^s do
 - a) Sample from $p(\delta|\phi^s)$; which is then $(\phi^s, \delta^s) \sim p(\phi, \delta|y)$
 - b) Simulate \tilde{J} times $\tilde{\alpha}_j$ and data $\tilde{y} = (\tilde{y}_{jt}; j = 1, ..., \tilde{J}; t = 1, ..., T')$ Note: $\tilde{J} \neq J'$ and $T \neq T'$ (design of y' maybe different)
 - c) Compute mean vector \widetilde{M}^s and covariance matrix $\widetilde{\Sigma}^s$
 - d) Approximate probability model of external summary with a MVN which is the *importance ratio* $r^{s} = N(\overline{y}' | \widetilde{M}^{s}, \frac{1}{I'} \widetilde{\Sigma}^{s})$
- 3. Compute *truncated importance weights* $w^s = \min(r^s, \sqrt{Sr})$

NOVARTIS

4. Use importance resampling to obtain final posterior

Efficiency Considerations Wide Prior on δ Leads to Poor Performance

- Wide δ prior implications
 - Will ensure an overlap with «best-fit» posterior
 - Most simulation draws are wasted
 - «Optimal» δ prior is its posterior in terms of efficiency
- Solution: Use suitable proposal g(x) and adjust ratios $E_p(x) = \int x \ p(x) \ dx = \int x \ \frac{p(x)}{g(x)} \ g(x) \ dx = E_g(r x)$
 - Sample in 2a) δ^s from density g instead from prior
 - Adjust importance ratio for draw s

$$r^{s} = \frac{p(\delta^{s} | \varphi^{s})}{g(\delta^{s})} \ N(\overline{y}' | \widetilde{M}^{s}, \frac{1}{J'} \widetilde{\Sigma}^{s})$$

• Use spread out posterior as new proposal density and iterate

Key Assumptions

Shared Model, Normal Summary Probability Model, Efficient Proposal

1. External data generated from partially shared model In the following example we assume:

$$\delta = \phi' - \phi = \left(0, \delta^{(2)}, 0, \dots, 0\right)$$

2. Patient level likelihood for external data replaced by **probability model of external summary** $\Pi_{j=1}^{J'} p(y'_{j} | \alpha'_{j}, \phi, \delta) \approx p(\overline{y}' | \phi, \delta)$

For mean summaries the **central limit theorem** justifies the use of the **multivariate Normal**

NOVARTIS

3. Efficiency ensured via suitable proposal density g $r^{s} = \frac{p(\delta^{s} | \phi^{s})}{g(\delta^{s})} N(\overline{y}' | \widetilde{M}^{s}, \frac{1}{I'} \widetilde{\Sigma}^{s})$

Evaluation Strategy

Compare Approximation Raw/Summary vs All Raw Scenario

- Simulation data set
 - 1. Simulate 50 patient profiles per arm (placebo, treatment 1 & 2)

$$\log(E_{\max_j}) = \begin{cases} -\infty & j \in placebo\\ \varphi^{(2)} & j \in treatment 1\\ \varphi^{(2)} + \delta^{(2)} & j \in treatment 2 \end{cases}$$

- 2. Summarize data for treatment 2 with geometric means
- 3. Repeat 1 & 2 for $\delta^{(2)} \in \{0.00, 0.27, 0.55, 0.82, 1.10\}$
- Prior $\delta^{(2)} \sim \text{Normal}(0,10)$
- Evaluation with multiple runs
 - All Raw: Full data set on placebo, treatment 1 & 2
 - **Raw/Summary**: Placebo, treatment 1 & summary of treatment 2

Simulation Example

Compare Approximation Raw/Summary vs All Raw Scenario

- 50 patients per arm 5 true different δ
- External with different Emax Multiple runs

Evaluating the Estimation of $\boldsymbol{\delta}$

Good Consistency, Coverage Slightly too Small based on 4 Simulations

16 | Bayes Pharma | S. Weber et al. | 20. May 15 | Bayesian aggregation of summary data | Public

Comparison for the Prediction of the 95% CI Mean Shown is The All Raw Data Case

17 | Bayes Pharma | S. Weber et al. | 20. May 15 | Bayesian aggregation of summary data | Public

Comparison for the Prediction of the 95% Cl Mean Shown is The All Raw Data Case with Raw/Summary Overlaid

Comparison for the Prediction of the 95% Cl Mean Shown is The All Raw Data Case with Raw/Summary Overlaid

Outlook: Hierarchical Expectation Propagation HEP Approximation Promises Improved Robustness

- Inference problem assumed to be separate for ϕ and δ , i.e. external data is not informative about ϕ
- If external data is informative about φ then importance weights may become unstable
- Hierarchical Expectation Propagation (HEP) alleviates this by data partitioning in that it splits the approximation of the likelihood into parts, i.e. In raw / summary and updates in each iteration the ϕ and δ posterior sequentially.

NOVARTIS

 \rightarrow EP-like algorithm

- Non-linear hierarchical models offer great flexibility during study design, yet they are of limited use in situations with heterogeneous sources of information
 Jusually combination of raw and summary intractable
- Key assumptions to combine raw and summary data
 - 1. Partially shared model
 - 2. Approximate patient likelihood with Normal probability model for external summary (central limit theorem justification)
 - 3. Efficiency ensured via suitable (iterative) proposal density; High efficiency of 20% to 40%
- Generally applicable, fake-data cross-check advisable

Colleagues at Novartis

- David James
- Ramesh Sarangapani
- Beat Neuenschwander
- Simon Wandel
- Satrajit Roychoudhury

- **Co-Authors**
- Andrew Gelman
- Bob Carpenter
- Daniel Lee
- Frederic Y. Bois
- Amy Racine

References

Stan

- Stan Dev Team 2015, Version 2.6. http://mc-stan.org.
- Hoffman and Gelman, JMLR., 2014, Vol. 15, 1351
- Expectation Propagation
 - Minka, T. Proc. 17. Conf. On Uncert. In AI, 362-369, 2001
 - Gelman, A. et al., Technical report, Columbia University, 2014
- Importance Resampling
 - Rubin, Ann. Stat., 1984, Vol. 12, 1151
 - Smith and Gelfand, Am. Stat., 1992, Vol. 46, No. 2
 - Diggle and Gratton, J Roy. Stat. Soc., 1984, Series B 46:193

Efficiency vs Iteration for the Raw/Summary Case Efficiency Variation due to Realization and Decrease with Larger δ

• Effective sample size $S_{eff}^{-1} = \sum_{s=1}^{S} w_s^{\dagger 2}$ Few iterations for optimal performance needed

