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1. Motivation: Trial Design with Hierarchical Models 
Using Patient Data and Data Summaries 

2. Bayesian Aggregation of Summary Data 

3. Example: Non-Linear Hierarchical Model  



Designing a Trial with an Active Control Arm 
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Assessing a Trial Design with Different Sources of Information 

 Examples include non-inferiority and bio-similarity trials 

 Test of a candidate substance against an active control 

• Candidate substance developed «in-house» 
 lots of raw data - individual patient level longitudinal data 

• Active control developed «externally» 
 only data summaries - publications or submission documents  

 New trial will be similar to earlier trials of the active control 
drug, but still to some extent different 
 meta-analysis on data summaries possible 

• Allows for partial pooling 

• Between-trial heterogeniety often difficult to handle 

• Restricted to reported summary endpoints and designs 



Drug Disease Modeling of Drug Responses 
Key Application is Clinical Trial Simulations (CTS) for Study Design 

 Simulation of drug responses of patients over time 

• New designs can be considered (regimes/incl.+excl. criteria/...) 

• Different endpoints can be explored including time to event 

 Hierarchical (population) based models commonly done 
Requires patient-level data 

 Paradox: Same disease progression, same patient 
population and likely similar mechanism of action, but 
population model describes only «in-house» drug 

How to learn from published summaries of 

longitudinal data in the context of 

non-linear hierarchical models? 
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Semi-Mechanistic Turn-Over Models 
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Linking Pharmacokinetics (PK) with Pharmacodynamics (PD) 

 PD response R can be safety or efficacy related driven by 
PK effect on «PD bio-compartement» 

• Zero order «production» / first order «elimination» of response R 

• 4 variants: zero / first order inhibition / stimulation due to PK 

• Drug response with respect to reference state (placebo) 

 Some regimens may lead to PK causing oscillations and 
hence oscillations in response 

Source: Peletie LA et al.; J Pharmacokinet Pharmacodyn. 2005 



Example: Simplified «Stimulation of kin» 
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Assuming Maximal Effect at All Times Allows for Analytic Solution 

 General turn-over model (only as ODE) 
dRj(t)

dt
= kinj [1 + Sj(Cj(t))] − kout Rj(t) 

 Simplification here: Cj t ≫ EC50  ⇒ Sj Cj t = Emaxj 

Rj(t) = αj
(1)

+ [αj
(0)

− αj
(1)
] exp(−kout t). 

αj
(0)

 

αj
(1)

 

exp(−kout t) 



Simulated Example Data Set 
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50 Patients per Treatment Arm Placebo, Treatment 1 & 2 

 Solid line is true population 
mean 
 
 

 No population differences 

 No between-trial variation 

 



Integrating External Summary Data 
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Data Generating Model Must be Shared at Least Partially 

 External data y′ assumed to follow almost the same model 

• Populations must be comparable (or needs appropiate adjustment) 

• Variance components must be identical 

• Natural disease progression must be the same 

 Statistical considerations 

• No gain to include external data if ϕ′ completley unrelated to ϕ 

• If δ = ϕ′ − ϕ = 0 then only precision improvement 

• Information is partially shared, i.e. few components of δ ≠ 0 
 Most interesting as scope of model expands 

 Direct approach is to consider patients as latent 
 High computational burden (dimensionality increase) 
(see Chiu, A. W. & Bois, F.Y. 2007) 



Hierarchical Model Structure 
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Likelihood on The Basis of Patients; only Population Posterior of Interest 

 Notation 

• Observations y from J patients at T time-points 
y = (yjt; j = 1, … , J; t = 1,… , T) 

• Parameter vector separated in population ϕ  and patient α 
(ϕ, α) 

 Model 

• Prior  

p(ϕ, α) = p(ϕ)  p
J
j=1 (αj|ϕ) 

• Likelihood for patient j  
p(yj|αj, ϕ) 

• Full posterior 

p(ϕ, α|y) ∝ p(ϕ)  p
J
j=1 (αj|ϕ) p

J
j=1 (yj|αj, ϕ) 

Interest is only 

in the marginal 

posterior 

 𝐩(𝛟|𝐲) 



Approximation of the Patient Level Likelihood 
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Key Idea is to Approximate Likelihood using Predictive of the Summary 

 Approximation steps to get  
p(ϕ, δ|y, y′) 

• Full posterior if full raw data would be available 
p(ϕ, δ, α, α′|y, y′) = p(ϕ, α|y) p(δ, α′|ϕ, y′)

 ∝ p(ϕ, α|y) p(δ|ϕ)  p
J′
j=1 (α′j|ϕ, δ) p

J′
j=1 (y′j|α′j, ϕ, δ)

 

• Approximation of patient level likelihood for the summary 

 p
J′
j=1 (y′j|α′j, ϕ, δ) ≈ p(y′|ϕ, δ) 

• Approximated posterior of interest is a reweighted posterior from 

the first inference (just like any Bayesian inference) 

p ϕ, δ y, y
′
∝ p ϕ y  p δ ϕ  p(y′|ϕ, δ) 

 Key idea: Replace patient likelihood by probability 

model of external summary given by the predictive 



Simulation Based Importance Weights 
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Central Limit Theorem Justifies a Multivariate Normal Approximation 

1. Obtain S draws ϕs from p(ϕ|y) 

2. For each draw ϕs do 

a) Sample from p(δ|ϕs); which is then (ϕs, δs) ∼ p(ϕ, δ|y) 

b) Simulate J  times α j and data y = y jt; j = 1,… , J ; t = 1,… , T′  

Note: 𝐽 ≠ 𝐽′ and 𝑇 ≠ 𝑇′ (design of y’ maybe different) 

c) Compute mean vector M s and covariance matrix Σ s 

d) Approximate probability model of external summary with a 
MVN which is the importance ratio 

𝒓𝒔 = 𝐍(𝒚′|𝑴 𝒔,
𝟏

𝑱′
𝜮 𝒔) 

3. Compute truncated importance weights 𝑤𝑠 = min(rs, Sr) 

4. Use importance resampling to obtain final posterior 

 

 

 



Efficiency Considerations 
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Wide Prior on δ Leads to Poor Performance 

 Wide δ prior implications 

• Will ensure an overlap with «best-fit» posterior 

• Most simulation draws are wasted 

• «Optimal» δ prior is its posterior in terms of efficiency 

 Solution: Use suitable proposal g(x) and adjust ratios 

Ep x = ∫ x p x  dx = ∫ x 
p x

g x
 g x  dx = Eg r x  

• Sample in 2a) δs from density g instead from prior 

• Adjust importance ratio for draw s 

rs =
p(δs|ϕs)

g(δs)
 N(y′|M s,

1

J′
Σ s) 

• Use spread out posterior as new proposal density and iterate 



Key Assumptions 

 | Bayes Pharma | S. Weber et al. | 20. May 15 | Bayesian aggregation of summary data | Public 13 

Shared Model, Normal Summary Probability Model, Efficient Proposal 

1. External data generated from partially shared model 
In the following example we assume: 

δ = ϕ′ − ϕ = 0, δ 2 , 0, … , 0  

2. Patient level likelihood for external data replaced by 

probability model of external summary 

 p
J′

j=1 y′j α′j, ϕ, δ ≈ p y
′
ϕ, δ  

For mean summaries the central limit theorem justifies 

the use of the multivariate Normal 

3. Efficiency ensured via suitable proposal density g 

rs =
p(δs|ϕs)

g(δs)
 N(y′|M s,

1

J′
Σ s) 



Evaluation Strategy 
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Compare Approximation Raw/Summary vs All Raw Scenario 

 Simulation data set 

1. Simulate 50 patient profiles per arm (placebo, treatment 1 & 2) 

log(Emaxj
) =  

−∞ j ∈ placebo

ϕ(2) j ∈ treatment 1

ϕ(2) + δ(2) j ∈ treatment 2

 

2. Summarize data for treatment 2 with geometric means 

3. Repeat 1 & 2 for δ(2) ∈ {0.00, 0.27, 0.55, 0.82, 1.10} 

 Prior δ(2) ∼ Normal(0,10) 

 Evaluation with multiple runs 

• All Raw: Full data set on placebo, treatment 1 & 2 

• Raw/Summary: Placebo, treatment 1 & summary of treatment 2 



Simulation Example 
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Compare Approximation Raw/Summary vs All Raw Scenario 

 50 patients per arm 

 External with different Emax 

 5 true different δ 

 Multiple runs 

Raw/Summary 

All Raw 



Evaluating the Estimation of δ 
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Good Consistency, Coverage Slightly too Small based on 4 Simulations 



Comparison for the Prediction of the 95% CI Mean 
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Shown is The All Raw Data Case 



Comparison for the Prediction of the 95% CI Mean 

 | Bayes Pharma | S. Weber et al. | 20. May 15 | Bayesian aggregation of summary data | Public 18 

Shown is The All Raw Data Case with Raw/Summary Overlaid 



Comparison for the Prediction of the 95% CI Mean 
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Shown is The All Raw Data Case with Raw/Summary Overlaid 



Outlook: Hierarchical Expectation Propagation 
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HEP Approximation Promises Improved Robustness 

 Inference problem assumed to be separate for ϕ and δ, 
i.e. external data is not informative about 𝜙 

 If external data is informative about ϕ then importance 
weights may become unstable 

 Hierarchical Expectation Propagation (HEP) alleviates 
this by data partitioning in that it splits the approximation 
of the likelihood into parts, i.e. In raw / summary and 
updates in each iteration the ϕ and δ posterior 
sequentially. 
 EP-like algorithm 



Conclusion 
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Utility of Non-Linear Hierarchical Models Greatly Expanded 

 Non-linear hierarchical models offer great flexibility 
during study design, yet they are of limited use in 
situations with heterogeneous sources of information 
 Usually combination of raw and summary intractable 

 Key assumptions to combine raw and summary data 

1. Partially shared model 

2. Approximate patient likelihood with Normal probability model 
for external summary (central limit theorem justification) 

3. Efficiency ensured via suitable (iterative) proposal density; 
High efficiency of 20% to 40% 

 Generally applicable, fake-data cross-check advisable 
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Efficiency vs Iteration for the Raw/Summary Case 
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Efficiency Variation due to Realization and Decrease with Larger δ 

 Effective sample size 

Seff
−1 =  ws

†2S
s=1  

 Few iterations for optimal 
performance needed 


