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 Rationale for novel modelling approach 

 Bayesian dose exposure model 

• Definition 

• Integration into dose-escalation decision process 

 Robust prior derivation 

 Implementation in PhI studies at Novartis 

 Conclusion 



 PhIb combination dose-escalation trials: both drugs may 
be novel, both drugs may be escalated 

 Two types of drug-drug interactions (DDI) 

• Safety DDI:  

- Increased/decreased DLT rate from that expected as monotherapy 

- BLRM models dose-DLT relationship and estimates safety DDI 

• PK DDI:  exposure of one or both drug(s) are increased/decreased 
from that expected as monotherapy 

• Link between PK DDI and safety DDI can be complex 

- PK DDI  may explain only parts of overall safety DDI  

- Safety DDI can be seen without PK DDI 

 How to incorporate PK information in a robust way into 
dose escalation decision?  
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Background 



Bayesian dose-DLT model 
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Current use of PK data for dose selection 
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PK data are already used in the decision 



Adding Bayesian dose-exposure models 
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New use of PK data for dose selection 



Evolution in dose-escalation paradigm 
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 New primary objective: identify ‘safe’ dose with desired exposure 

 Combine outputs from independant modeling of dose-DLT and dose-
exposure relationships to establish RDE/RP2D* with optimal exposure 
of both agents 

 Safety comes first! Highest doses allowed by Bayesian Logistic 
Regression Model (BLRM) following Escalation With Over-dose 
Control (EWOC) principle to control risk of over-toxicity 

 Desired exposure driven by safety, pharmacodynamic and clinical 
activity (especially true for new targeted therapies with safer profile) 

 Feasible since PK measured in all trials. Can be tailored to more 
complex settings  

 Doesn’t prevent escalation to proceed on the basis of safety data only 
(when PK data not available and not critical for next decision)   

* RDE=Recommended Dose for Expansion / RP2D=Recommended Phase II dose 



Added value of integrating dose-exposure modelling 
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 Decrease subjectivity of its use  

 Increase efficiency of decision process 

• Escalation paths more varied and escalation of both drugs more 
likely 

 Increase precision of the resulting dose recommendation 

• Less dose pairs declared as the final recommended dose  

 Minimise number of patients treated at sub-optimal dose 
levels  

• Escalation faster when negative DDI 

 Minimise number of patients overdosed 

• Escalation more cautious when positive DDI 

 

 

Simulation study  [details in Cotteril (2015)] 



One BLRM + two dose-exposure models 
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 5-parameter BLRM for combination is used [Neuenschwander (2014)] 

 Empirical bayesian dose-exposure model for each compound A and B: 

 

log(pkAdA,dB) = φ1AI(dB=0) + φ2A log(dA/dA*))  + φ3AI(dB>0)  + φ4A log(1+dB/dB*)  + εA 

 

 

log(pkBdA,dB) = φ1BI(dA=0) + φ2B log(dB/dB*))  + φ3BI(dA>0)  + φ4B log(1+dA/dA*)  + εB 

 

εA~N(0, 1/τA
2) 

εB~N(0, 1/τB
2) 
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Defining target exposures 
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 Exposures at s.a. RP2Ds but could be lower (e.g. if indicated by 
preclinical studies) 

 Define relevant posterior summaries for each combination of interest: 

• Mean/median exposures (with probability intervals) 

• Probabilities of under/over exposure 

• Distance between posterior distribution of exposures and target exposures 

 Identify ‘safe’ combinations (as per EWOC ) that allow to reach 
predefined target exposures for both drugs  

 If there is too much uncertainty about target exposure, better not to use 
target exposure. Instead rely on estimates to learn about DDI 

 



Illustration: exposure of drug A decreased when 
combined with drug B 
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Posterior mean exposure of Drug A (with 95%CI) 

Drug A (mg) 

 No DLTs in first cohort of patients treated at A=10mg, B=200mg → BLRM 

allows escalation to either 30mg of drug A or 300mg of drug B 

 Modelling of PK data suggest dose independent DDI requiring escalation of 

drug A well beyond s.a. RP2D of 30mg to achieve target exposure 
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 A 4-step approach to combine all sources of prior 
information 

 Step 1: leverage single agent data (+ relevant combination 
data) 

• Fit bayesian models (using non-informative priors) to obtain informative 
priors for s.a. parameters φ1, φ2 and for inter patient variability ε 

• Non-informative priors obtained for parameters related to DDI  

• Down-weight posterior variances so that effective sample size corresponds 
to moderate/substantial heterogeneity between historical data and on-study 
data (meta-analytic-predictive prior can also be used) 

• PK information may only be available in external publication as summary 
statistics 

Prior buidling and robustification 
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 Step 2: integrate DDI predictions from PB/PK modelling: 

• Simcyp is a population-based simulator:  

- Incorporates numerous databases containing human physiological, genetic 
and epidemiological information.  

- Allows to integrate this information with in vitro and clinical data to predict 
PK behavior in ‘real-world’ populations. 

• Used to adapt parametrization of empirical Bayesian model to likely 
mechanism of DDI 

• Build informative priors for all parameters, including those related to  
DDI: φ3, φ4 and also ε 

- Use PB/PK model to simulate pkA and pkB for virtual patients 

- Fit bayesian models on pkA and pkB (using non-informative priors) 

- Down-weight posterior variances so that effective sample size corresponds 
to substantial/large heterogeneity between PB/PK DDI predictions and DDI 
in trial population 

Prior buidling and robustification (cont.) 
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 Step 3: build a non-informative (NI) prior for all 
parameters: 

• Same as Simcyp prior but with further down-weighting so that 
effective sample size corresponds to one observation 

 Step 4: combine 3 priors in a mixture that provides good 
behavior to the model even when conflict between prior 
and data 

• Define prior weights, e.g. 0.4, 0.4 and 0.2 for SA, Simcyp and NI 
priors, respectively 

• Prior weights are updated into posterior weights when model is 
updated with data 

Prior buidling and robustification (cont.) 



Implemented in 6 Novartis Oncology PhI trials so 
far 
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 5 combinations trials (where significant PK DDI is expected) / 1 single 
agent trial (RP2D expected to have similar exposure than competitors) 

 Selected PK parameters are co-primary or key secondary endpoints 

 Flexible wording regarding the recommendations provided by the 
Bayesian dose-exposure model  

 Estimated exposures provide additional information to further guide the 
dose selection 

 No additional constraint on the dose escalation: 

• For later cohorts, the dose escalation may occur without having the full PK data 
available, on condition that the EWOC criterion is met 

• Higher escalation step allowed when negative PK DDI  

 No challenge from HA and IRBs so far 

 

 



Concluding remarks 
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 Evolution from current dose-escalation paradigm since the identification 
of the RDE/RP2D gives more weight to non-DLT data 

 Current approach benefited from cross functional collaboration 
(biostatistics, clinical pharmacology, drug metabolism & 
pharmacokinetics, clinical) 

 Requires an early and close collaboration at project team level 

• DDI risk should be discussed and addressed early in protocol concept 

 Requires more time to set up but lead to design with increased 
efficiency 

 Method is still novel and adaptations are expected from learnings during 
execution phase of trials 
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Illustration of mixture prior 
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Mixture for dose-independent DDI 

parameter 

Posterior weights when data aligned  

with Simcyp prior  
prior weights: 0.4(SA), 0.4(Simcyp), 0.2(NI) 

φ3  


