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Because of  the clinical applications, precise  
PK/PD modeling is incredibly important.  
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Robust treatment decisions requires modeling both  
the latent PK/PD process and the measurement.
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Analytic models are common due to their computational 
convenience but ultimately too restrictive.
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Analytic PK/PD models, for  
example, are exactly solvable.
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Analytic PK/PD models, for  
example, are exactly solvable.
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These analytic models, however, can’t capture many  
nonlinear effects in more realistic PK/PD systems.
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Similarly, analytic measurement  
models are straightforward to fit.
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Similarly, analytic measurement  
models are straightforward to fit.
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But for population data analytic measurement models 
 either introduce bias or suffer from large uncertainties.
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But for population data analytic measurement models 
 either introduce bias or suffer from large uncertainties.
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If  we want to maximize the utility of  the data  
then we need non-analytic measurement models.



Non-analytic models are practically difficult  
because they are computationally demanding to fit.
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Recall that in Bayesian inference our complete  
model is specified with a posterior distribution.    



Recall that in Bayesian inference our complete  
model is specified with a posterior distribution.    

⇡(✓|D) / ⇡(D|✓)⇡(✓)



Recall that in Bayesian inference our complete  
model is specified with a posterior distribution.    

✓)⇡(✓)⇡(✓|D) / ⇡(D|✓)⇡(✓)



⇡(✓|D) / ⇡(D|✓)⇡(✓)

Recall that in Bayesian inference our complete  
model is specified with a posterior distribution.    

✓)⇡(✓)/ ⇡(D|✓)



And all well-posed statistical manipulations are 
expectations with respect to the posterior.    
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Expectations, however, are computationally  
demanding when the model is complex.    
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The problem is that probability concentrates on a 
nonlinear surface called the typical set.    



In order to estimate expectations we can use Markov 
chain Monte Carlo to find and explore the typical set.
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Given the complexity of  the PK/PD model, this 
exploration has to be extremely efficient to be practical.



Random Walk Metropolis explores with 
 an ineffective “guided’’ diffusion.
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The Gibbs sampler updates each parameter  
one-at-a-time to no greater success.
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we need coherent exploration.
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A strongly typed modeling language allows users to 
specify complex models with minimal effort. 



Stan not only admits the specification of  a  
system of  ordinary differential equations… 

functions { 
  real[] onecomp_mm_infusion(real t, 
                             real[] y, 
                             real[] theta, 
                             real[] x_r, 
                             int[] x_i) { 
!
    real dydt[1]; 
!
    if (t < x_r[2]) 
      dydt[1] <- - theta[2] * y[1] / ( theta[1] * (theta[3] + y[1]) ) 
                 + x_r[1] / (theta[1] * x_r[2]); 
    else 
      dydt[1] <- - theta[2] * y[1] / ( theta[1] * (theta[3] + y[1]) ); 
!
    return dydt; 
!
  } 
}



transformed parameters { 
  … 
  for (p in 1:N_patients) { 
    V[p] <- exp(mu_V + eta_V[p] * omega_V); 
    V_m[p] <- exp(mu_V_m + eta_V_m[p] * omega_V_m); 
     
    theta[1] <- V[p]; 
    theta[2] <- V_m[p]; 
    theta[3] <- K_m; 
!
    C <- integrate_ode(onecomp_mm_infusion, C0, t0, t, theta, x_r, x_i); 
  … 
}

But also high-performance integrators. 



Consequently, even complex statistical modeling  
of  PK/PD systems is straightforward in Stan. 

model { 
   
  eta_V ~ normal(0, 1); 
  mu_V ~ normal(log(5), 1); 
  sigma_V ~ cauchy(0, 1); 
   
  eta_V_m ~ normal(0, 1); 
  mu_V_m ~ cauchy(0, 1); 
  sigma_V_m ~ cauchy(0, 1); 
   
  K_m ~ cauchy(0, 1); 
!
  for (p in 1:N_patients) 
    for (n in 1:N_t) 
      C_hat[p, n] ~ lognormal(log(C[p, n]), 0.15); 
}
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Once a posterior has been specified, Stan implements 
Hamiltonian Monte Carlo to estimate expectations.



Let’s consider a one-compartment Michaelis-Menten 
clearance model with a constant infusion.
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Data is simulated for ten patients, with  
each patient given their own V and Vm.
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each patient given their own V and Vm.
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Within a few minutes Stan generates all of  the samples  
we need to infer the individual patient concentrations.
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As well as simulated data for constructing  
posterior predictive checks.
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We can also analyze the system parameters  
for each individual patient.



As well as the population parameters.
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As well as the population parameters.




