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Goals

Introduce PROC MCMC
Illustrate features of PROC MCMC relevant to the pharmaceutical
industry through examples
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A Primer on PROC MCMC

The MCMC Procedure is a General Simulation Procedure

single-level or multilevel (hierarchical) models
linear or nonlinear models, such as regression, survival, ordinal
multinomial
missing data problems
PK models, latent variable models, state space models

The current release is SAS/STAT R©13.2, the second maintenance release of
SAS 9.4, and Revision 14w32. The next release is SAS/STAT R©14.1,
Revision 15w29.
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A Primer on PROC MCMC

Typical PROC Call is a Mixture of Statements and DATA
Step Language

PROC MCMC options;

PARMS; define parameters.

PRIOR; declare prior distributions

Programming statements;
MODEL;

}
define log-likelihood function

PREDDIST; posterior prediction

RANDOM; random effects
UDS; User-Defined Sampler

run;
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A Primer on PROC MCMC

Simple Example

weighti ∼ normal(µi , var = σ2)

µi = β0 + β1 · heighti
β0, β1 ∼ normal(0, var = 100)

σ2 ∼ inverse Gamma(shape = 2, scale = 2)

The data:

data class;
input height weight;

datalines;
69.0 112.5
56.5 84.0
65.3 98.0

...
57.5 85.0
66.5 112.0

;
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A Primer on PROC MCMC

PROC MCMC Program Reflects the Statistical Model

weighti ∼ normal(µi , var = σ2)

µi = β0 + β1 · heighti
β0, β1 ∼ normal(0, var = 100)

σ2 ∼ inverse Gamma(shape = 2, scale = 2)

proc mcmc data=class seed=1 nbi=5000 nmc=10000 outpost=regOut;
parms beta0 beta1 s2;
prior beta: ~ normal(0, var=100);
prior s2 ~ igamma(shape=2, scale=2);
mu = beta0 + beta * height;
model weight ~ normal(mu, var=s2);
run;
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A Primer on PROC MCMC

Built-in Flexibilities

weighti ∼ t(µi , sd = σ, df = 3)
µi = β0 + β1 · heighti

β0, β1 ∼ normal(0, var = 100)
σ ∼ uniform(0, 25)

Change the model, parameterization, and so on as required:

proc mcmc data=class seed=1 nbi=5000 nmc=10000 outpost=regOut;
parms beta0 beta1 sig;
prior beta: ~ normal(0, var=100);
prior sig ~ uniform(0, 25);
mu = beta0 + beta1 * height;
model weight ~ t(mu, sd=sig, df=3);
run;
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A Primer on PROC MCMC

Built-in Flexibilities

weighti ∼ poisson(λi )
λi = exp(β0 + β1 · heighti )

β0, β1 ∼ normal(0, var = 100)

You can fit generalized or nonliear models:

proc mcmc data=class seed=1 nbi=5000 nmc=10000 outpost=regOut;
parms beta0 beta1;
prior beta: ~ normal(0, var=100);
lambda = exp(beta0 + beta1 * height);
model weight ~ poisson(lambda);
run;
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A Primer on PROC MCMC

What Does the Procedure Produce

samples from the posterior
posterior statistics (mean, s.d., HPD, etc)
convergence diagnostics (ESS, Geweke, MCSE, etc)
graphical display (trace plot, ACF plot, KDE plot)
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A Primer on PROC MCMC

Sampling Algorithm Hierarchy

Continuous Discrete
Parameters Parameters

When Applicable
Conjugate Conjugate
Direct Direct

Inverse CDF

All Others

RWM Discrete RWM
RWM-t Geometric RWM
HMC
NUTS
slice
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A Primer on PROC MCMC

Additional Features

mix and match sampling algorithms
control parameters updating sequence
implement your own sampler (the UDS Statement)
obtain optimized estimates (no MCMC run)
multithread

I log likelihood computation
I sampling of conditionally independent parameters
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A Primer on PROC MCMC

The Posterior Distribution

PROC MCMC uses the general posterior form:

π(θ|y , x) ∝ π(θ) · f (y |θ, x)

The PRIOR statements define the prior distributions: π(θ).
The MODEL statement defines the likelihood function for each
observation in the data set: f (yi |θ, xi ), for i = 1, · · · , n
The posterior distribution (on the log scale):

log(π(θ|y , x)) = log(π(θ)) +
n∑

i=1

log(f (yi |θ, xi ))

where y = {yi} and x = {xi}
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A Primer on PROC MCMC

The Procedure Loops Through the Input Data Set to
Compute log(π(θ|y))

Obs Height Weight
1 69.0 112.5
2 56.5 84.0
3 65.3 98.0
...

19 66.5 112.0

proc mcmc data=input;
prior;
progm stmt;
model ;
run;

at the top of the data set

log π(θ|y) = log(f (y1|θ))
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A Primer on PROC MCMC

The Procedure Loops Through the Input Data Set to
Compute log(π(θ|y))

Obs Height Weight
1 69.0 112.5
2 56.5 84.0
3 65.3 98.0
...

19 66.5 112.0

proc mcmc data=input;
prior;
progm stmt;
model;
run;

at the last observation, the prior is included

log π(θ|y) = log(π(θ)) +
∑n

i=1 log(f (yi |θ))
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A Primer on PROC MCMC

PROC MCMC and WinBUGS Syntax

In WinBUGS, a for-loop and array indices are used to access records in
variables; In PROC MCMC, the looping over the data set is implicit.

parms beta tau;
prior beta ~ normal(0, prec=0.1);
prior tau ~ gamma(0.1, is=0.1);
mu = beta * height;
model weight ~ normal(mu, prec=tau);

model {
for(i in 1:19) {

mu[i] = beta * height[i]
weight[i] ~ dnorm(mu[i], tau)

}
beta ~ dnorm(0, 0.1)
tau ~ gamma(0.1, 0.1)

}
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A Primer on PROC MCMC

Distributions

PROC MCMC supports the usual suspects in standard distributions:

Univariate: normal, uniform, beta, igamma, gamma, t, poisson, etc
Multivariate: mvn, iwish, dirich, multinom
Categorical: table
Truncation: lower= and upper=

You can also define non-standard distributions using DATA step language
(more later).
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A Primer on PROC MCMC

DATA Step Language Offers Versatility

Most DATA step operators, functions, and statements can be used in
PROC MCMC. You can

debug the program
compute functions of parameters
construct general prior and/or likelihood functions

Programs and derivative computations are translated and executed in C.
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Applications Incorporation of Historical Data

Two Data Sets
Researchers are interested in evaluating the performance of a medical
procedure in a multicenter study. There have been two studies, a historical
data and a current data:

data pilot;
input event n;
datalines;
5 163

;

data trials;
input event n center;
datalines;
2 86 1
2 69 2
1 71 3
1 113 4
1 103 5

;

event: number of deaths

n: number of patients assigned to the treatment procedure

center: center index
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Applications Incorporation of Historical Data

Various Ways of Utilizing Information from the Pilot Data in
Constructing a Prior

parametrix approximation (MAP approach)
commensurate prior
nonparametrix approximation (use KDEs)
power prior

p(θ|D0, a0) ∝ L(θ;D0)
a0 · π0(θ)
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Applications Incorporation of Historical Data

Power Prior with Fixed a0 is Relatively Straightforward

The posterior distribution can be factored in the following way:

p(θ|D∗, a0) ∝
n+n0∏
i=1

fi (yi |θ, xi ) · π0(θ)

where fi =

{
f (yi |θ, xi ) for each i in the current data set
f (y0,i |θ, x0,i )

a0 for each i in the historical data set

Need to assign the appropriate likelihood function to each observations.

But f (y0,i |θ, x0,i )
a0 does not have a standard form.
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Applications Incorporation of Historical Data

Specifying a Nonstandard Distribution

The GENERAL and DGENERAL functions enable you construct your own
prior or likelihood function. The “D” stands for discrete.

PRIOR alpha ∼ dgeneral(lp);
MODEL y ∼ general(llike);

The expressions lp and llike must take the values of the logarithm of
the distribution.

The normalizing constant of the distribution can be ignored, as long as it is
independent of other parameters in the model.
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Applications Incorporation of Historical Data

The GENERAL Distribution

Suppose that you want to use the following prior:

π(σ2) ∝ 1
σ2

which is a nonstandard distribution (nonintegrable prior). The logarithm of
this prior is

log(π(σ2)) = − log(σ2) + C

You use the following statements to declare this prior:

lp = -log(sigma2);
prior sigma2 ~ general(lp, lower=0);
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Applications Incorporation of Historical Data

Fitting Power Prior with Fixed a0

OBS event n group

1 2 86 current
2 2 69 current
3 1 71 current
4 1 113 current
5 1 103 current
6 5 163 pilot

proc mcmc data=alldata nmc=50000 outpost=a1;
parm p 0.2;
a0 = 0.2;
prior p ~ uniform(0, 1);
llike = logpdf("binomial", event, p, n);
if (group = "pilot") then

llike = a0 * llike;
model general(llike);
run;

The general function specifies the likelihood function, which is either a
binomial (current) or a weighted binomial (pilot).
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Applications Incorporation of Historical Data

Prior on a0 Requires Integration

In specifying π(a0), you must compute the normalizing constant:

p(θ, a0|D0) ∝ p(θ|D0, a0) · π(a0)

=
L(θ;D0)

a0 · π0(θ)∫
L(θ;D0)a0 · π0(θ)dθ

· π0(a0)

=
1

C (a0)
· L(θ;D0)

a0 · π0(θ) · π0(a0)

The CALL QUAD subroutinne computes integral of a user-specific
functionn (defined using PROC FCMP)

Adaptive Romberg for univariate problem
Laplace for multidimensional problem
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Applications Incorporation of Historical Data

Normalized Power Prior
proc fcmp outlib=sasuser.funcs.power;

subroutine bPower(p, den, y, n, a0); ! integration w.r.t. p
outargs den;
den = exp(a0 * logpdf("binomial", y, p, n)); ! L(p; D0)

a0

endsub;
run;

options cmplib=sasuser.funcs;
proc mcmc data=alldata seed=17 nmc=50000 outpost=npout;

parm p 0.5;
parm a0 0.2;
prior p a0 ~ uniform(0, 1); ! a0 is a parameter
llike = logpdf("binomial", event, p, n);
if (group = ’pilot’) then do;

CALL QUAD(’bPower’, C, 0, 1, event, n, a0); ! C is the integral
llike = -log(C) + a0 * llike;
end;

model general(llike);
run;
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Applications Incorporation of Historical Data

Posterior Distribution Comparison

0.00 0.02 0.04 0.06

p0

0.00 0.02 0.04 0.06

p0

a0=1
a0=0.2
a0=0
normalized
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Applications Random-effects models
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Applications Random-effects models

The RANDOM Statement Constructs Random Effects in a
Model
The statement supports both

conditional independence models (most common):

βj ∼ π(θ)

βi ⊥ βj a priori

dependence (autoregressive type of) models:

βj ∼ π(βj−k , βj+l , θ)

βj−k , βj+l : k-th lag or l-th lead variables

For example. you can model

π(θj) ∼ normal
(
θj−1 + θj+1

2
, var = 1

)
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Applications Random-effects models

PROC MCMC Supports a Variety of Random-Effects Models

multiple effects (school, class, student, etc)
nested or non-nested models
linear or nonlinear
corner-point constraint
standard (normal, MVN, categorical, etc) and general prior
distributions
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Applications Random-effects models

Simple Binomial Random-Effects Model

A simple example:

yi ∼ binomial(ni , pi )
pi ∼ beta(a, b)

random p ~ beta(a, b) subject = center;
model y ~ binomial(n, p);

The number of R.E. parameters is determined by the number of unique
values in the SUBJECT= variable.
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Applications Random-effects models

Parallel Similarity

Again, the syntax is similar in WinBUGS. The difference is in implicit
indexing:

y[] n[] center[]
2 86 1
2 69 2
1 71 3
1 113 4
1 103 5

END

model {
for(i in 1:5) {

y[i] ~ dbin(p[i], n[i])
}

for(i in 1:5) {
p[i] ~ beta(a, b)

}
}
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Applications Random-effects models

Repeats in Subjects

The nested indexing is handled internally by the procedure. For example, if
there are repeats in center:

y[] n[] center[]
2 86 1
2 69 2
1 71 2
1 113 3
1 103 2

END

in WinBUGS:

model {
for(i in 1:5) {

y[i] ~ dbin(p[center[i]], n[i])
}

for(i in 1:3) {
p[i] ~ beta(a, b)

}
}

in PROC MCMC:

random p ~ beta(a, b) subject = center;
model y ~ binomial(n, p);
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Applications Random-effects models
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Applications Random-effects models

Pharmacokinetic Models

Computational challenges in fitting PK models are

nonlinear models
I DATA step language enables modeling flexibilities

random-effects models
I RANDOM statements

differential equation solver, ODEs or piecewise ODEs
I CALL ODE subroutine
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Applications Random-effects models

CALL ODE

The CALL ODE subroutine solves a set of first-order ODEs, including
piecewise DEs. The form is dy

dt = f (t, y(t)) over the subinterval t ∈ [ti , tf ]
with the initial values y(ti ) = y0.

CALL ODE("DeqFun", Soln, Init, ti, tf <, args>);

DeqFun : name of the subroutine function of a set of ODEs
Soln : solutions (can be numeric or an array)
Init : initial values of y
ti : initial time value of the subinterval t
tf : final time value of the subinterval t

args : input arguments to DeqFun
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Applications Random-effects models

Define ODEs

The set of differential equations is specified in PROC FCMP:

PROC FCMP outlib=sasuser.funcs.ODE;
SUBROUTINE DeqFun(t,y[*],dy[*], A1,A2,...,Ak);
OUTARGS dy;
dy[1] = -A1*y[1];
dy[2] = A2*y[1]-Ak-1*y[2];
...
endsub;

run;

outlib : location to store the objective function
t : the time variable
y : the w.r.t. variable

dy : DE function variable, must be declared as an OUTARGS
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Applications Random-effects models

One-Compartment Model

A well-known case, which studied concentrations of theophylline in 12
subjects over a 25-hour period after oral administration. The differential
equations and initial values are:

dA0(t)

dt
= −KaA0(t)

dA(t)

dt
= KaA0(t)− KeA(t)

A0(t = 0) = x

A(t = 0) = 0

where Ka is the absorption rate, Ke is
the elimination rate, and x is dose.
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Applications Random-effects models

The statistical model is:

µi (t) = Ai (t)/Cli

yi (t) ∼ normal(µi (t), σ2)

where i is the subject index, Ai (t) is the ODE solution at time t, and Cl is
the clearance. Further,

CLi = exp(β1 + bi1)

Kai = exp(β2 + bi2)

Kei = exp(β3)

where

β1, β2, β3 ∼ normal(0, 100)(
b1
b2

)
∼ MVN (µ,Σ)

39 / 66



Applications Random-effects models

Part of the data set:

data theoph;
input subject time conc dose;
datalines;

1 0.00 0.74 4.02
1 0.25 2.84 4.02
1 0.57 6.57 4.02
1 1.12 10.50 4.02
1 2.02 9.66 4.02
1 3.82 8.58 4.02
1 5.10 8.36 4.02
1 7.03 7.47 4.02
1 9.05 6.89 4.02
1 12.12 5.94 4.02
1 24.37 3.28 4.02
2 0.00 0.00 4.40
2 0.27 1.72 4.40
2 0.52 7.91 4.40

...
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Applications Random-effects models

Define the set of ODE using PROC FCMP:

proc fcmp outlib=sasuser.funcs.PK;
subroutine OneComp(t,y[*],dy[*],ka,ke);
outargs dy;
dy[1] = -ka*y[1];
dy[2] = ka*y[1]-ke*y[2];
endsub;

run;

with the ODEs:

dA0(t)

dt
= −KaA0(t)

dA(t)

dt
= KaA0(t)− KeA(t)
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Applications Random-effects models

options cmplib=sasuser.funcs;
proc mcmc data=theoph nmc=10000 seed=27 outpost=theophO

diag=none nthreads=8;
array b[2]; ! two-dim random-effects
array muB[2] (0 0);
array cov[2,2]; ! cov matrix for b
array S[2,2] (1 0 0 1);
array init[2] dose 0; ! A0(t = 0) = x ; A(t = 0) = 0
array sol[2]; ! solution matrix

parms beta1 -3.22 beta2 0.47 beta3 -2.45 ;
parms cov {0.03 0 0 0.4};
parms s2y;
prior beta: ~ normal(0, sd=100);
prior cov ~ iwish(2, S);
prior s2y ~ igamma(shape=3, scale=2);

random b ~ mvn(muB, cov) subject=subject;
cl = exp(beta1 + b1); ! CLi = exp(β1 + bi1)
ka = exp(beta2 + b2); ! Kai = exp(β2 + bi2)
ke = exp(beta3); ! Kei = exp(β3 )
v = cl/ke;
call ode(’OneComp’,sol,init,0,time,ka,ke);
mu = (sol[2]/v); ! Ai (t) = sol[2]
model conc ~ normal(mu,var=s2y);

run;
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Applications Random-effects models

Prediction

You can make prediction on a new patient with dose = 4.7 over a period
time:

data NewPatient;
dose = 4.7;
do time = 0 to 25 by 0.3;

output;
end;

run;

proc mcmc ...;
/* identical code */

preddist outpred=NewOut covariates=NewPatient;
run;
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Applications Random-effects models

Predicted mean and 95% HPD intervals for a new patient who is given
dose = 4.7:
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Applications Random-effects models

Piecewise ODEs

The CALL ODE subroutine also solves piecewise differential equations. You

specify the system of ODEs in PROC FCMP
input a numerical array with interval boundaries
specify an initial value function in PROC FCMP for initial values of
the ODEs at different intervals (for example, solution to the first
interval can become the initial value for the second interval).

CALL ODE("DeqFun", Soln, ., ti, tf, G1, G2, ... , Gk,
ode_grid, "InitFun", H1, H2, ..., Hl <, ode_opt>);

For more information, refer to procedure documentation in the SAS/STAT
User’s Guide.
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Applications Missing Data Analysis
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Applications Missing Data Analysis

Missing Data in PROC MCMC

Treatment of missing data in PROC MCMC is straightforward.

Missing values are random variables
An additional Gibbs step is inserted in the sampling
The objective is to obtain the joint posterior distribution conditional
on observed data: π(θ, ymis|x, yobs)
The approach is model-based and capable of handling complex missing
data scenarios.
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Applications Missing Data Analysis

Handling of Missing Values in PROC MCMC

The MODEL statement handles the estimation of all missing values:

MODEL variable-list ∼ distribution <options> ;

The distribution is the usual likelihood function when the MODEL
statement is applied to a response variable;
It becomes a prior distribution for a covariate;

PROC MCMC
identifies all missing values that are in variable-list
creates a parameter for each missing value
draws samples in a Gibbs fashion in simulation
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Applications Missing Data Analysis

PROC MCMC models missing values only for MODEL statement
variables. If there are missing values in y:

MODEL y ~ normal(mu, var=1);

Each missing value in y becomes a parameter.
Records that contain missing values in other data set variables are
discarded. If there are missing values in x:

mu = beta0 + beta1 * x;
MODEL y ~ normal(mu, var=1);

PROC MCMC does not model any missing values in x by default,
unless you model it specifically:

model x ~ normal(alpha0 + beta1 * age, var=2);
mu = beta0 + beta1 * x;
MODEL y ~ normal(mu, var=1);
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Applications Missing Data Analysis

Modelling Missing Data in PROC MCMC

PROC MCMC handles all three types of missing data models:

Missing Completely at Random (use option MISSING=CC)
Missing at Random (PROC MCMC’s default)
Missing not at Random (model missing mechanism R)

I selection model

f (r , y |x , θ) ∝ f (y |x , α) · f (r |y , x , β)
I pattern-mixture model

f (r , y |x , θ) ∝ f (y |r , x , δ) · f (r |x , γ)
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Applications Missing Data Analysis

Modeling MNAR in PROC MCMC

You use two MODEL statements, one for the marginal model and one for
the conditional model.

In select model, you use one MODEL statement to model f (y |x , α),
one to model f (r |y , x , β)
In pattern-mixture model, you use one MODEL statement to model
f (r |x , γ), one to model f (y |r , x , δ)

The marginal model must appear before the conditional model.
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Applications Missing Data Analysis
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Applications Missing Data Analysis

Example Data Set

The data are based on a double-blind antidepressant clinical trial
originally reported by Goldstein et al (2004).
The Drug Information Association (DIA) working group on missing
data have made this data set available at www.missingdata.org.uk.
To avoid implications for marketed drugs, all patients who took active
medication are grouped into a single DRUG group and only a subset of
the original trial patients are included.
There are 171 subjects in the data set, 88 in the control arm, and 83
in the active arm.
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Applications Missing Data Analysis

Variables in the Data Set
patient: patient ID

baseval: baseline assessment on the Hamilton 17-item rating scale for
depression (HAMD17, Hamilton 1960).

change1–change4: change in HAMD17 at weeks 1, 2, 4, and 6.

r1–r4: missing data indicator for each of the change variables.

therapy: treatment (DRUG vs PLACEBO)

poolinv: blocking information (Groups formed by pooling investigator).

last: week index to last non-missing change value. Patient’s last visit week.

wkMax: maximum number of weeks to be included in the analysis.

The first few observations of the selection data set:

data selection;
input PATIENT baseval change1-change4 r1-r4 THERAPY $ POOLINV $ last wkMax;
datalines;
1503 32 -11 -12 -13 -15 0 0 0 0 DRUG 006 4 4
1507 14 -3 0 -5 -9 0 0 0 0 PLACEBO 006 4 4

...
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Applications Missing Data Analysis

Average Mean Changes of HAMD17 by Withdrawal Pattern
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Applications Missing Data Analysis

Data Characteristics

Dropout probabilities appear to be correlated with the observed level
of improvement (change in score).
Patients failing to see improvement (flat or up-swinging lines), are
more likely to withdraw.
The probability of withdrawal could also depend on how they felt at
the first unobserved visit - the MNAR part of the model.
Fit a selection model:

f (change|x, θ) · f (r|change, φ)
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Applications Missing Data Analysis

Outcome Model

For every subject i , changei = {changej i} is modeled using a MVN(µi , Σ),
where j = {1, 2, 3, 4} is the week index.

The mean variables, µi = (µ1i , µ2i , µ3i , µ4i ), are modeled via:

µj i = mkj + βj · (baseval-18) + γl

where k = {1, 2} indexes the treatment, l indexes pooling investigator.

The following prior distributions are used in the analysis:

π(mkj , βj , γl) ∝ 1
Σ ∼ iWishart(4, I )
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Applications Missing Data Analysis

The Selection Model

The selection model (Diggle-Kenward model) includes the previous and current
(possibly missing) response variables for each week:

rkj i ∼ binary(qkj i )
qkj i = logistic(φk1 + φk2 · change(j−1)i

+ φ3k · changej i )

The parameters φk· account for treatment effect in separate regression models.
Flat prior is used:

π(φk·) ∝ 1
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proc mcmc data=selection nmc=20000 seed=176 outpost=seleout;
array Change[4] Change1-Change4; ! response
array mu[4]; ! µi

array Sigma[4,4]; ! Σ
array S[4,4] (1 0 0 0, 0 1 0 0, 0 0 1 0, 0 0 0 1);! S = I
array beta[4] ; ! βj
array M[2,4] m1-m8; ! mkj

array phi[2,3] phi1-phi6; ! φk·

parms beta: 0 ;
parms m1-m8 0;
parms phi1-phi6 0;
parms Sigma ;
prior beta: m1-m8 phi: ~ general(0); ! π(mkj , βj , φk ) ∝ 1
prior Sigma ~ iwish(4, S); ! π(Σ) = iWishart(4, S)

/* outcome model */
random gamma ~ general(0) subject=poolinv zero=first init=0; ! π(γl ) ∝ 1
do j=1 to 4;

if therapy eq "DRUG" then do;
mu[j] = m[1,j] + gamma + beta[j]*(baseval-18); ! µ{k = DRUG}j

end; else do;
mu[j] = m[2,j] + gamma + beta[j]*(baseval-18); ! µ{k = PLACEBO}j

end;
end;
model Change ~ mvn(mu, Sigma); ! likelihood
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MCMC Code for the Selection Model

/* selection mechanism */
array r[4] r1-r4; ! missing data indicator
llike = 0;
do j = 21 to wkMax

if therapy eq "DRUG" then do;
mn = phi[1,1] + phi[1,2] * change[j-1] + phi[1,3] * change[j];
q = logistic(mn); ! q{k=DRUG}j

end; else do;
mn = phi[2,1] + phi[2,2] * change[j-1] + phi[2,3] * change[j];
q = logistic(mn); ! q{k=PLACEBO}j

end;
llike = llike + lpdfbern(r[i], q); ! accumulates binary

! likelihood over weeks
end;
model r2 r3 r4 ~ general(llike); ! declares joint likelihood

run;

1 Variable change1 doesn’t contain any missing values, making r1 irrelevant to the analysis.
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Outcome Model Estimates

Comparison of posterior distributions of mdrug,j and mplacebo,j over the weeks:

The treatment difference at week 1 is
negligible.

The difference becomes larger as the
trial progresses, with the predicted
score change for the DRUG group
declining at a faster pace. The
difference (mean difference is -2.42)
is largest at the end of the trial.
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Selection Model Estimates, When All are Estimated

Posterior distributions of φk·, which model the change in the probability of
dropouts given the score changes in the last and the current, potentially missing,
week:

φdrug,2 (phi2) and φplacebo,2
(phi5) are positive, suggesting that
as the patient felt worse (increase in
HAMD17 score) in their previous visit,
they were more likely to dropout.

φdrug,2 (phi3) φplacebo,2 (phi6) are
negative, suggesting that patients
were less likely to withdraw from the
trial had they felt worse in the current
week.
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Sensitivity Analysis Fixing MNAR Parameter Values

The parameters in this complete model are poorly estimated. An idea is to fix the
regression on the potentially unobserved values (phi3 and phi6) and observe
sensitivity to changing these. The estimated model (1st boxplot) produces similar
point estimates (but larger s.d.) to the MAR model (2nd).

when phi3 < phi6, boxplots shift to
the left (3rd, 7th, and 8th). DRUG
patients were more likely to drop out
if they felt improvement in the
current week. This results in stronger
estimated treatment effect as the
estimate is corrected for these missed
patients.

when phi3 > phi6, boxplots shift to
the right (4th, 5th, and 6th), resulting
in weaker treatment effect estimates.
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Finishing Thoughts

Bayesian modeling is a key development area for SAS and we plan to
continuously make improvement to the procedure. Some areas of keen
interests include:

distributed computing
spatial inference
approximation-based algorithms
class variables
automatic model selection
wish list?

We always welcome your comments and feedback.
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Additional Information

The current release: SAS/STAT R©13.2, Revision 14w32.

The upcoming release: SAS/STAT R©14.1, Revision 15w29.

You can use the following web resources:

http://support.sas.com/documentation/onlinedoc/stat/index.html

http://support.sas.com/rnd/app/Bayesian/MCMC.html

http://support.sas.com/rnd/app/examples/STATwebexamples.html

Or send me an email!
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Copyrights

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the USA and
other countries. R©indicates USA registration.

Other brand and product names are registered trademarks or trademarks of
their respective companies.
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