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Introduction
Methodology and overview

Context:
* Planning Novartis early development clinical trials
 Desire to incorporate historical control information

Methodology:

* MAP priors commonly used to obtain equivalent sample size
(Neuenschwander et al. 2010)

» Concerns about prior-data conflict and analytical intractability

* Mixture priors of conjugate distributions are appealing in this setting
(Schmidli et al. 2014)

Application:
« Case study from infectious disease proof of concept study design
* Mixture prior approach fully implemented in design and analysis
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Case study: Phase 2a efficacy study

Overview

New compound intended to treat an infection and its resulting disease
* Infection is common (>50% world-wide)
* Latent infection — immune system fails to clear the virus

Most infections are asymptomatic or mild but significant disease can
appear in at-risk persons

 Bacterial and fungal infections
* Deafness/blindness

* Mental retardation

* Death

Currently available therapies are efficacious, but also associated with
serious toxicities

* Neutropenia, thrombocytopenia, seizures, anemia
 Carcinogenicity/teratogenicity in animals
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Disease prevention and treatment
Treatment strategies for patients at risk

Due to mortality and morbidity associated with infection/disease, most
common strategy is preventative treatment

Prophylaxis:
» Therapy given during period of highest risk to prevent virus growth

Preemptive:

* Therapy initiated after virus is detected (viral load exceeds given threshold)
but before disease develops

Prophylaxis more efficacious than preemptive strategy, but also
associated with increased risk of toxicity
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ABC123
Background and high-level study design

Novel compound (ABC123) has the potential to be used in a
prophylaxis setting

* Well tolerated in preclinical toxicity studies at 10 times highest (expected)
human dose

» Well tolerated in first-in-human healthy volunteer study

First clinical study in patients — randomized, double-blind, placebo-
controlled

- Evaluate efficacy, safety and PK of ABC123 when given as a prophylaxis
* Recruit patients that are at relatively high risk of infection

» Goal is to prevent infection, i.e. prevent viral loads from reaching a pre-
defined threshold

- If this threshold is reached, then treat patients with standard-of-care
» Placebo-controlled study is ethical in this setting
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ABC123 patient study

Key statistical aspects of study design

Primary endpoint is binary (infection yes/no)
« Efficacy represented in terms of relative risk p/p¢

Use beta-binomial (conjugate) model for analysis

* Non-informative Beta(1/3,1/3) prior for p;

* Informative prior on p. based on historical data (details to follow)

* Prior mean 0.41 and 90% CI (0.21,0.64) — Effective sample size 42
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Meta-analysis for the placebo arm
Mathematical model

Mathematical setup for H historical studies:

Model: 74, ~ Binomial(pp, n4), logit(pn) ~ N(u, 7)), h=1,...,H
Priors: p ~ N(0, 1el0) and 7 ~ Half-Normal(0, 1)

Prediction for this study: logit(p*) ~ N (u, 7 2)

2

—+ Data *— MAP estimate

6 similar historical studies with 747 total Study 1
placebo patients

Study 2 -
* Pooled mean event rate = 40%

JAGS used to simulate draws from prior Study 37
predictive distribution of p*

Study 4 -

Forest plot shows results of this analysis

Study 5

Study 6

-:—.—
MAP prior p* - &
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Meta-analysis for the placebo arm

Robusness

‘Robustified’ MAP prior responds with greater flexibility to prior data conflicts

Number of components not too influential in this context (as long as =2)
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Meta-analysis for the placebo arm

Placebo sample size

Effective sample size of prior computed as in (Morita et al. 2008)

« ESS = Sample size such that expected information of the posterior under a non-
informative prior is the same as the information of the robust MAP prior

* [n our case =42

Considerable information for placebo

Decision: 16 placebo patients

* Allow meaningful comparison on
secondary endpoints and safety

* Maximize prior predictive probability
of observing a placebo event rate —>
in the 90% predicted interval for p*
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Primary analysis
Statistical model and PoC criteria

3:1 randomization ratio in favor of ABC123 with total N = 64

Quantitative PoC criteria:
1. Posterior probability that p/p- <1 is at least 0.9
2. Posterior probability that p,/p. <0.5 is at least 0.5

Outcomes

. 1) and 2): “Positive result”

. Neither 1) nor 2): “Negative result” ]
. 1) or 2), not both: “Indeterminate”
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Trial outcomes
Visualizing outcome vs. success/failure

With a binary endpoint we can tabulate (or plot) trial outcomes ahead of time

Quantitative success criteria can be fine-tuned via visualization

This illustration quite useful for clinical colleagues as a ‘gut-check’ of success

criteria

Events on placebo arm
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Operating characteristics
3:1 randomization — 64 total evaluable subjects

Probability of negative result is usually <0.2 (at ABC123 <0.2)
Probability of positive result usually >0.8 (at ABC123<0.15)

Robust OC for range of true placebo event rates (0.35-0.5)
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Operating characteristics
3:1 randomization — 64 total evaluable subjects

Probability of negative result is usually <0.2 (at ABC123 <0.2)
Probability of positive result usually >0.8 (at ABC123<0.15)

Robust OC for range of true placebo event rates (0.35-0.5)

True placebo rate= — 0.35 — 04 — 0.45— 0.5
Hon-informative prior Robust MAP prior

1.00

0.75
o

® 0.50
=
o
[ =
o

0.25

0.00

0.0 01 0.2 0.3 0.4 0.5 00 041 0.2 0.3 0.4 0.5

True event rate for ABC123

15 | Bayes Pharma | B Magnusson | 21-May-2015 | Robust MAP priors | Business Use Only U NOVARTIS



Inte“m anaIyS|S Pr (Pos or Ind | data) = /Pr (Pos or Ind | 9)p(9|data)d9
Quantitative futility criterion 0 = (pc,pr)

Team desired IA with option to terminate study based on futility
» Analysis conducted with 50% planned sample size

Futility defined as <0.1 predictive probability of achieving positive or
indeterminate trial result
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Conclusion & discussion

Clinical trial team was enthusiastic about the methodology
- “Bayesian” seems popular
» Saving placebo patients was an attractive option

MCMC distribution can be approximated with few (22) mixture
components

Additional possibilities not included in final design
* 1A readout for efficacy
* Re-estimation of placebo sample size at IA

Choosing the placebo sample size was not straightforward

« Some confusion about “confirming” the meta analysis

Usefulness of graphs for illustration
« Trial outcomes, predictive power, etc.
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