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Example: Chemotherapy
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Expected Net Benefit &

Health economic decisions are based on the utility of a
treatment, typically defined in terms of the monetary net benefit:

nbt =ke; — ¢
where k is the willingness-to-pay.

Uncertainty in this value is driven by e and ¢ and an underlying
parameter set 6

0= (7T07 Y Py SEl) SEQa Ala Al; Hla H27 Canlba ChOSp’ Cclh‘“g’ Cg""“_(l)
To make decisions we maximise expected utility:

NB; = kEle,] — E[c]

We typically wish to characterise the impact of parameter
uncertainty using the known distribution utility

NB(8), = kE[e, | 6] — Elc, | 6]

on the decision making process.



Value of Information &

Value of information methods can be used to summarise this
parameter uncertainty

A common summary is known as the Expected Value of Perfect
Information

EVPI = Eg [mtax {NB(8)}] — maxEq [NB,(6)]

This gives an upper limit on future research costs

Often we are concerned with research targeting a subset of
parameters ¢, e.g9. ¢ = (w1, m2)
This is known as the Expected Value of Partial Perfect

Information (EVPPI)
EVPPI = Eg [max {Eqyjs INB:(6)]}] — max Ey. 4 NB(6)]

where 0 = (¢, )



EVPPI as a regression problem "

Computational challenges have limited the applicability of EVPPI

The calculation of the conditional expectation of the net benefit
can be transformed into a regression problem

NB;(6) = Eqys [NB.(0)] + €
where € ~ N(0,0?)
The conditional expectation is dependent on the value of ¢
NB:(0) = g:(¢) + ¢

So to calculate the EVPPI we must find the functions g.(¢)

S S
— ]_ ~ 1 N

EVPPI = — erngxgt<¢s> — max Zl !(ds)
where S is the number of samples from the distribution of 6.
Flexible, non-parametric regression methods should be used

Strong et al. (2014) [3]



Gaussian Process Regression "

Models the outputs as a multivariate normal dependent on some
inputs ¢
Based on a mean function and a covariance function

Mean function based on the inputs, often linearly

Covariance function defines how correlated outputs are based on
the inputs (often the distance between the inputs)

These functions are given generic forms based on
hyperparameters ¢

We approximate these hyperparameters based on data
MAP estimates are available but computationally costly

For example:
NB;(61) 1 7T% w%
NBt(eg) 1 7'('% 71'%

~ Normal ) Do B,c)+1
NB, (65) 1§ xS



INLA A

Integrated Nested Laplace Approximations (INLA) is a fast
Bayesian inference method for Latent Gaussian Models.

Yi | v, A ~ Dist(h(n;))

ng ng
N =a+ ij("/ji) + Z/Bk%i +€
=1 k=1
YA~ N(p(A), Q™ (N)
A~ 7(A)

Q(X) must be sparse to allow for fast computation

In order to use INLA, we must transform our Gaussian Process
structure into a Latent Gaussian Field



Latent Gaussian Field &

We can rewrite our Gaussian process regression, with H as the
design matrix, to mimic the Latent Gaussian Field structure:

NB;|w,3,¢ ~ N(HB + w,c*I)

n; = H;B 4+ w;
( 2 > ”N(O’( T e ))
¢~ n(Q)

This is a Latent Gaussian Field if 35 and Q(¢) are sparse
matrices.
We assume that X3 is known and sparse
Q(¢) is the covariance matrix which is not sparse but ideas
developed in spatial statistics have allowed us to approximate this
matrix by a sparse matrix



SPDE-INLA to calculate EVPPI &

INLA can be used in a spatial setting where the position of points
has an impact on their respective values

A Gaussian Process with a specific covariance function is the
solution to a stochastic differential equation:

(k2 = A)E7f() = W()

where A is the Laplcien and W(¢) is Gaussian white noise.

Therefore, approximating the solution of Stochastic Partial
Differential Equations (SPDE) is equivalent to approximating our
Matérn Gaussian Process

Using the finite element representation we transform the
estimation of w into the estimation of a set of Gaussian weights
with a sparse precision matrix.

Lindgren and Rue (2013) [2]



This sparse precision matrix is only available in two dimensions
The parameter set ¢ will often have more than two parameters

Project from this higher dimensional space to 2 dimensions and
then find the sparse precision matrix

Use Principal Components Analysis as it preserves Euclidean
distance

The original values of ¢ are used to estimate 3
NB;|w,3,¢ ~ N(HB + w, 1)

Heath et al. (2015) [1]



Computational Time "

Number of important - Computation Time
parameters Vaccine Example | Chemotherapy
GP | SPDE-INLA | GP | SPDE-INLA

2 - - 19 14

3 - - 18 14

4 - - 21 15

5 24 9 20 16

6 46 9 56 16

7 222 9 32 19

8 128 9 117 18

9 252 8 187 18

10 198 11 374 19

11 776 8 - -

12 264 11 - -

13 660 13 - -

14 695 12 - -

15 910 11 - -

16 559 13 - -
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Conclusion N

Vol methods are theoretically valid measures of decision
uncertainty but their application has been hindered by the
computational cost involved in calculating the EVPPI

Strong et al. provide an efficient method to calculate the EVPPI
but in some cases this is still expensive

We have developed a method that calculates the EVPPI in
around 10 seconds (for 1000 samples) irrespective of the
complexity of the situation

This methods draws on methods from spatial statistics and uses
R-INLA

Functions are available to allow practitioners to use this method
easily and therefore calculate the EVPPI in all situations in
around 10 seconds.
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