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Example: Chemotherapy
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Expected Net Benefit

• Health economic decisions are based on the utility of a
treatment, typically defined in terms of the monetary net benefit:

nbt = ket − ct
where k is the willingness-to-pay.

• Uncertainty in this value is driven by e and c and an underlying
parameter set θ

θ = (π0, γ, ρ, SE1, SE2, A1, A1, H1, H2, c
amb, chosp, cdrug1 , cdrug2 )

• To make decisions we maximise expected utility:

NBt = kE[et]− E[ct]

• We typically wish to characterise the impact of parameter
uncertainty using the known distribution utility

NB(θ)t = kE[et | θ]− E[ct | θ]

on the decision making process.



Value of Information

• Value of information methods can be used to summarise this
parameter uncertainty

• A common summary is known as the Expected Value of Perfect
Information

EVPI = Eθ
[
max

t
{NBt(θ)}

]
−max

t
Eθ [NBt(θ)]

• This gives an upper limit on future research costs
• Often we are concerned with research targeting a subset of

parameters φ, e.g. φ = (π1, π2)

• This is known as the Expected Value of Partial Perfect
Information (EVPPI)

EVPPI = Eφ
[
max

t

{
Eψ|φ [NBt(θ)]

}]
−max

t
Eψ,φ [NBt(θ)]

where θ = (φ,ψ)



EVPPI as a regression problem
• Computational challenges have limited the applicability of EVPPI
• The calculation of the conditional expectation of the net benefit

can be transformed into a regression problem

NBt(θ) = Eψ|φ [NBt(θ)] + ε

where ε ∼ N(0, σ2)

• The conditional expectation is dependent on the value of φ

NBt(θ) = gt(φ) + ε

• So to calculate the EVPPI we must find the functions gt(φ)

ÊVPPI =
1

S

S∑
s=1

max
t
ĝt(φs)−max

t

1

S

S∑
s=1

ĝt(φs)

where S is the number of samples from the distribution of θ.
• Flexible, non-parametric regression methods should be used

Strong et al. (2014) [3]



Gaussian Process Regression

• Models the outputs as a multivariate normal dependent on some
inputs φ

• Based on a mean function and a covariance function
• Mean function based on the inputs, often linearly
• Covariance function defines how correlated outputs are based on

the inputs (often the distance between the inputs)

• These functions are given generic forms based on
hyperparameters ζ

• We approximate these hyperparameters based on data
• MAP estimates are available but computationally costly

For example:
NBt(θ1)
NBt(θ2)

...
NBt(θS)

 ∼ Normal




1 π1
1 π1

2

1 π2
1 π2

2
...

...
1 πS

1 πS
2

β,C(ζ) + σ2I





INLA

• Integrated Nested Laplace Approximations (INLA) is a fast
Bayesian inference method for Latent Gaussian Models.

yi | γ,λ ∼ Dist(h(ηi))

ηi = α+

nf∑
j=1

fj(γji) +

nβ∑
k=1

βkγki + εi

γ|λ ∼ N(µ(λ),Q−1(λ))

λ ∼ π(λ)

• Q(λ) must be sparse to allow for fast computation
• In order to use INLA, we must transform our Gaussian Process

structure into a Latent Gaussian Field



Latent Gaussian Field

• We can rewrite our Gaussian process regression, with H as the
design matrix, to mimic the Latent Gaussian Field structure:

NBt|ω,β, ζ ∼ N(Hβ + ω, σ2I)

ηi = Hiβ + ωi(
β
ω

)
∼ N

(
0,

(
Σβ 0
0 Q−1(ζ)

))
ζ ∼ π(ζ)

• This is a Latent Gaussian Field if Σβ and Q(ζ) are sparse
matrices.

• We assume that Σβ is known and sparse
• Q(ζ) is the covariance matrix which is not sparse but ideas

developed in spatial statistics have allowed us to approximate this
matrix by a sparse matrix



SPDE-INLA to calculate EVPPI

• INLA can be used in a spatial setting where the position of points
has an impact on their respective values

• A Gaussian Process with a specific covariance function is the
solution to a stochastic differential equation:

(κ2 −∆)
α
2 τf(φ) =W(φ)

where ∆ is the Laplcien andW(φ) is Gaussian white noise.
• Therefore, approximating the solution of Stochastic Partial

Differential Equations (SPDE) is equivalent to approximating our
Matérn Gaussian Process

• Using the finite element representation we transform the
estimation of ω into the estimation of a set of Gaussian weights
with a sparse precision matrix.

Lindgren and Rue (2013) [2]



Projections

• This sparse precision matrix is only available in two dimensions
• The parameter set φ will often have more than two parameters
• Project from this higher dimensional space to 2 dimensions and

then find the sparse precision matrix
• Use Principal Components Analysis as it preserves Euclidean

distance
• The original values of φ are used to estimate β

NBt|ω,β, ζ ∼ N(Hβ + ω, σ2I)

Heath et al. (2015) [1]



Computational Time

Number of important
parameters

Computation Time
Vaccine Example Chemotherapy
GP SPDE-INLA GP SPDE-INLA

2 - - 19 14
3 - - 18 14
4 - - 21 15
5 24 9 20 16
6 46 9 56 16
7 222 9 32 19
8 128 9 117 18
9 252 8 187 18
10 198 11 374 19
11 776 8 - -
12 264 11 - -
13 660 13 - -
14 695 12 - -
15 910 11 - -
16 559 13 - -



Accuracy
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Conclusion

• VoI methods are theoretically valid measures of decision
uncertainty but their application has been hindered by the
computational cost involved in calculating the EVPPI

• Strong et al. provide an efficient method to calculate the EVPPI
but in some cases this is still expensive

• We have developed a method that calculates the EVPPI in
around 10 seconds (for 1000 samples) irrespective of the
complexity of the situation

• This methods draws on methods from spatial statistics and uses
R-INLA

• Functions are available to allow practitioners to use this method
easily and therefore calculate the EVPPI in all situations in
around 10 seconds.
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