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Motivating example
Traditional clinical trial design

 Disease
Ankylosing spondylitis

 Experimental treatment
Secukinumab (monoclonal antibody)

 Endpoint
Binary: response at week 6

 Traditional clinical trial design
• Secukinumab (n=24) vs. Placebo (n=24)
• Fisher’s exact test

However: 8 similar historical placebo-controlled clinical trials 
with different experimental treatments available
Could this historical placebo information be used? 
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Motivating example
Clinical trial design and analysis with historical controls

Historical placebo information
• Bayesian primary analysis

• Prior Placebo Derived from 8 historical trials (N=533), using
a Meta-Analytic-Predictive (MAP) approach

Beta(11,32)    worth  43=11+32 patients 

• Prior Experimental Weakly informative

Beta(0.5,1)    worth  1.5=0.5+1 patients

• Design: 
Secukinumab (n=24) vs. Placebo (n=6)

• Results:
14/24 Secukinumab  vs. 1/6 Placebo,   p( >0 | data) > 99.8%

Baeten et al. (2013) Lancet 382(9906):1705-1713
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Historical control information
Design and analysis of clinical trials

 Advantages – less patients on placebo
Ethics, recruitment speed, trial costs, trial duration

 Methodology
• Bias model (Pocock)
• Power prior (Ibrahim, Chen)
• Commensurate prior (Hobbs, Carlin, Sargent)
• Meta-Analytic-Predictive (MAP) prior (Spiegelhalter,Neuenschwander)

 Common to all approaches: discounting of historical 
information due to between-trial heterogeneity
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Meta-Analytic-Predictive (MAP) priors
Deriving prior for control in new study – binary data

Control group data – number of responders Y

• new study:             Y* ~ Binomial(* ,n* )    θ* = logit(*)   
• historical studies:  Yh ~ Binomial(h ,nh )   θh = logit(h)       h=1,...,H 

Exchangeability assumption

θ*, θ1 , ... , θH ~   Normal(µ,2)         

population mean µ, between-trial standard deviation 

weakly informative priors for µ and 

Spiegelhalter et al. (2004), Neuenschwander et al. (2010)
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Meta-Analytic-Predictive (MAP) priors
Another example: Proof-of-Concept study in ulcerative colitis

Prediction: MAP prior 
pH(*) = p(* | Y1 , ...,YH)

*

Control group

Schmidli et al. (2014)
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Meta-Analytic-Predictive (MAP) priors
Biometric practice - approximating the MAP prior

 MAP prior pH(*)
Not available analytically (just MCMC sample), but can be 
approximated by mixture of conjugate priors
Dalal and Hall (1983), Diaconis and Ylvisaker (1985)

 Easy communication: discussions with clinical trial team, health
authorities, ethics commitees; clinical trial protocols; publications

 Analytical posterior calculation: fast operating characteristics

 Kullback-Leibler divergence as measure of closeness 
between MAP prior and its approximation
• Arguably most appropriate for inference problems

Bernardo and Smith (1994), O'Hagan and Forster (2004)

• Equivalent to ML estimation of mixture model using MCMC sample:
standard software can be used (e.g. procedure FMM in SAS)   
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Meta-Analytic-Predictive (MAP) priors
Biometric practice - approximating the MAP prior

 d

0          10          20           30         40          50          60
Remission (%)

Mixtures of
Beta-distributions

pH(*) 
MAP prior

pොH(*) = Beta(2.3;16) 
Approximation (1 component)

*
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Meta-Analytic-Predictive (MAP) priors
Biometric practice - approximating the MAP prior

 d

0          10          20           30         40          50          60
Remission (%)

Mixtures of
Beta-distributions

pH(*) 
MAP prior

pොH(*) =    0.53 Beta(2.5;19.1) 
+ 0.38 Beta(14.6;120.2)
+ 0.08 Beta(0.9;2.8)

Approximation (3 components)

*
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Meta-Analytic-Predictive (MAP) priors
Prior effective sample size ESS

 Conjugate prior:  Beta(a,b)    => ESS = a+b

 Mixture of conjugate priors:
ESS is sample size such that expected information of  
posterior under non-informative prior is same as 
information of informative prior
Morita, Thall and Müller (2008, 2012)

Proof-of-Concept study in ulcerative colitis
Approximation to MAP prior pH(*)   
H(*)=0.53 Beta(2.5;19.1)+0.38 Beta(14.6;120.2)+0.08 Beta(0.9;2.8)̂݌
ESS = 81

ESS=18 for single component approximation  Beta(2.3;16) 
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Meta-Analytic-Predictive (MAP) priors
Robustness

 Prior-data conflict
• Conjugate priors: compromise between prior and data

Fuquene, Cook and Pericchi (2009)

• Priors with heavy tails: prior information discarded with increasing 
conflict => appropriate in clinical trial setting
O'Hagan and Pericchi (2012) 

 MAP priors
• Typically heavy-tailed, hence naturally robust
• Further robustness and more rapid adaptation to prior-data conflicts 

by adding extra weakly-informative mixture component.
e.g. pHR(*) =  0.9 pH(*) + 0.1 Beta(1,1)

De Groot always carried an  of probability for surprises in his pocket!
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Meta-Analytic-Predictive (MAP) priors
Robustness – conjugate prior – hypothetical example

Conjugate prior          Posterior           Likelihood
Beta(2.3,16)                     Beta(17.3,21)              15 / 20 

(hypothetical) 

"Bayesian - One who, vaguely expecting a horse and catching a 
glimpse of a donkey, strongly concludes he has seen a mule". 

Stephen Senn

*
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Meta-Analytic-Predictive (MAP) priors
Robustness – MAP prior

Robust Likelihood
MAP prior       Posterior

Robust MAP prior:  pHR(*)  =  0.9 pH(*)  + 0.1 Beta(1,1) 
pH(*)=0.53 Beta(2.5;19.1)+0.38 Beta(14.6;120.2)+0.08 Beta(0.9;2.8)

*
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 Multiple treatments
Network meta-analytic-predictive approach
Example
24 historical trials, 5 treatments
Schmidli et al. (2013)

 Partial exchangeability
Meta-regression
Example 
51 historical trials, >17000 patients
Different drug combinations
Witte et al. (2013) 

Extensions
Network meta-analysis and meta-regression
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Conclusions

 Use of historical control information is attractive
Ethics, recruitment speed, trial costs, trial duration

 Meta-Analytic-Predictive (MAP) prior can be approximated 
by mixture of conjugate priors
• Easy communication
• Analytical posterior calculation
• Typically robust to prior-data conflict, however may want to add extra 

weakly-informative mixture component

 In rare case of prior-data conflict
• Inference with robust prior still valid
• May lead to inconclusive trial results  adaptive design

“... think it possible that you may be mistaken.” Cromwell
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