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Regulatory Timeline for Rosiglitazone (Avandia)

I Rosiglitazone gets approval in US (1999) and Europe (2000)
I New evidence of risks arises [see Nissen and Wolski, 2007]
I 2010 European regulators revert their recommendation
I 2011-13 US regulators impose special restrictions
I 2013 US regulators reanalyzed clinical trials data and voted to

lift restrictions

No consensus on the magnitude of the risks and whether the risks
outweigh the benefits.



Objective

I Principled Benefit-Risk Assessment of a drug
I Assess and Compare different treatments
I Incorporate:

I Clinical Judgment
I Uncertainty



Benefit-RiskMethodology Project

In 2008 European Medicines Agency (EMA) started the Benefit-Risk
Methodology Project1 with experts in decision theory from the LSE
and with the University of Groningen.

identify decision-making models that could be used in the
Agency’s work, to make the assessment of the benefits
and risks of medicines more consistent, more transparent
and easier to audit.

1http://www.ema.europa.eu/ema/index.jsp?curl=pages/special_topics/
document_listing/document_listing_000314.jsp

http://www.ema.europa.eu/ema/index.jsp?curl=pages/special_topics/document_listing/document_listing_000314.jsp
http://www.ema.europa.eu/ema/index.jsp?curl=pages/special_topics/document_listing/document_listing_000314.jsp


Multi-Criteria Decision Analysis (MCDA)

I Identify the population mean µj of all variables of interest
I Transform effects f (µj) to a common scale for comparison

f (x) =
{ 100xmin

xmin−xmax
+ 100

xmax−xmin
x for favourable effects

100xmax
xmax−xmin

+ 100
xmin−xmax

x otherwise

I Assign clinical weights wj to each effect so that
∑

j wj = 1
I Calculate the weighted average score

S =
∑

j
wj · fj(µj)



Summary of Current State of Research

aggregate level data
I State of the art focus on modeling summary data
I hence does not account for correlation among variables
I Wen et al. [2014] present 2 methods to incorporate uncertainty

in MCDA Benefit-Risk Score for a known covariance matrix Γ

patient level data
I When patient level data is available we need an appropriate

model to incorporate correlation
I We propose a Bayesian Latent Variable Model to and introduce

correlation among the latent variables
I The model is flexible enough to handle mixed type data

(continuous, binary and count)



Wen et al. [2014]
2 Approaches to Incorporate Clinical Data Uncertainty in MCDA

I δ-method to construct confidence interval of MCDA score

ŝ =
∑

j
wj · fj(µ̂j)

s ∼ N(ŝ,∇s ′ Γ ∇s)

I Monte-Carlo method for confidence interval of MCDA score

µ(i) ∼ N(µ̂, Γ)
s(i) =

∑
j
wj · fj(µ̂j)

An estimate of Γ is needed to apply this method. Note that Γ
cannot be identified from aggregate level data.



Bayesian Modeling
I Phillips et al. [2015] proposed using MCDA for drug assessment

I Bayesian model for aggregate level data
I assumes independence of variables
I constructed posterior predictive distribution of the MCDA score

under uniform improper priors

I Wen et al. [2014] in future research section highlight the need
to for a more sophisticated Bayesian model to incorporate
correlations.

I We propose method to find the covariance matrix Γ with
patient level data

I we adopt the ‘matrix completion’ method to find the correlation
matrix R among the variables

I we extend the Talhouk et al. [2012] algorithm to account for
data of mixed type (continuous, binary, counts etc.)

I we provide a Gibbs sampler (implemented in Python) and an
HMC algorithm (implemented in Stan)



Model

Data is recorded in a N × J matrix Yij
J effects possibly correlated and N independent subjects
For binary (or count) data:{

Yij ∼ Bernoulli(ηij) ( ∼ Poisson(ηij))
hj(ηij) = µj + Zij , for appropriate link function h

For continuous variables:

Yij = µj + Zij , i = 1, . . . ,N.

The distribution of Z is assumed2 to be

Zi : ∼ NJ(0J ,Σ),

where Σ is a J × J covariance matrix, 0J is a row J−dimensional
vector with zeros and Zi : are independent ∀i .

2other options are available, e.g. a multivariate t



Model

I Parametrisation according to covariance is non likelihood
identifiable

I Gibbs sampler is adapted from Talhouk et al. [2012] targets
conditionals p(Σ|Z , µ) and p(µ|Z ,Σ). Uses Metropolis within
Gibbs step for p(Z |Σ, µ)

I HMC sampler is able to sample from p(Z ,Σ, µ|Y )
simultaneously using information from the gradient of the
parameter space

I We use appropriately wide priors as suggested in relevant
literature

With posterior samples from p(µ(g)|Y (g)) for g = {C ,T} we are
able to simulated any metric of interest, such as the distribution of
final scores p(s(g)) or the probability of the treatment being better
P(sT > sC |Y ).



Simulations
Simulated datasets for the efficacy and adverse effects of a
hypothetical drug. We created two datasets, Treatment (T) and
Control (C) and calculated Benefit-Risk scores sT and sC

respectively. We compare the two models
I Model 1 Independent Model
I Model 2 Latent Variable model that learns the correlation

matrix R
Compared cases between datasets generated with R = I and R 6= 0
where sampled correlation values

R ′ =


1 u u 0 0
u 1 u 0 0
u u 1 0 0
0 0 0 1 v
0 0 0 v 1


I u ∼ U(0.5, 0.9) among the continuous effects
I v ∼ U(0.2, 0.6) among the binary effects



Results

Correlation matters
I The posterior distribution pM1(µ|Y ) has lower variance than

pM2(µ|Y )
I As a result PM1(sT > sC |y) overestimates the true probability

P(sT > sC |y)

The proposed free model is relatively robust against overfitting and
is able to retrieve the correct values even when the data has no
correlation.



Results
We generate two synthetic datasets: correlation R = I (Dataset A),
and correlation R = R ′ (Dataset B).
We estimate the probability that treatment is better than the
control P(sT > sC |y) with both models 1 and 2.

Fully Bayesian Model 1 Model 2

Dataset
A 94% 93%
B 93% 91%

App. Normal Model 1 Model 2

Dataset
A 91% 91%
B 92% 88%



Application to real data

I We applied our model to a patient level dataset for 3
treatments for type 2 Diabetes

I 4 adverse binary variables (Diarrhoea, Nausea/Vomiting,
Dyspepsia, Oedema) and 2 efficacy continuous variables
(Haemoglobin and Glucose levels)

I We did discovered strong correlations only between efficacy
variables

I We confirmed that the results are very similar between Model 1
and Model 2



Application to real data

Fully Bayesian Model 1 Model 2

Treatment
RSG - AVM 93% 93%
RSG - MET 99% 99%

App. Normal Model 1 Model 2

Treatment
RSG - AVM 92% 94%
RSG - MET 99% 99%



Discussion

I Currently working on assessing the effect of priors on the
posterior mean and variance

I Current inference methods (Gibbs and HMC) provide
reasonable agreement between the true parameter values and
their posterior distributions.

I HMC is more powerful than Gibbs but potentially more
computationally expensive

I There is room to improve MCMC. Possible solution includes
Pseudo-Marginal Likelihood method to integrate out latent
variables.



Discussion

I There is still the question of how to choose a parsimonious
model

I Neither of the two inference methods provides estimates of
marginal likelihood for Bayesian model choice

I Possible solution includes Pseudo-Marginal Likelihood method
to integrate out latent variables.

I Future work includes Sequential Monte Carlo methods that
address all the above limitations



Thank you!

Konstantinos Vamvourellis
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