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“The Fourth Industrial Revolution”

uin dob date tagz age sex seg status type code

12385 ######## ######## 0 21.79603 female Tech servicesemployee Initial Amber

81174 ######## ######## 0 21.71116 female Plant operator surfacecontractorPeriodic Green

991163 ######## ######## 0 21.27584 male Development maintenancecontractor Initial Green

80844 ######## ######## 0 27.37577 female Tech servicesemployee Initial Green

81137 ######## ######## 0 19.66598 male Tech servicesemployee Initial Green

81092 ######## ######## 0 24.37509 female Plant operator surfacecontractor Initial Green“raw data, no matter 
how extensive, are useless 
without a model.” 
– Nate Silver

convergence of 
computing, data, 

artificial intelligence 
and universal 
connectivity



Bayesian Modelling

p(q|Y) = p(Y|q) p(q) / p(Y)

p(q|Y) = p(q) p(Y|q) / p(Y)



Models:

• Probabilistic

• Regularised

• Flexible

• Robust

• Transferable

• Adaptive

Computation:

• Scalable 
(parallelisable)

• Subsampling

• Pre-computation

• Approximations 

"In the past ten years, it's hard to find 
anything that doesn't advocate a Bayesian 
approach." -Nate Silver

Inference:

• Estimation

• Optimisation

• Uncertainty 
quantification

• Testing

• Model averaging

Meeting the challenge: “New Bayes”



Methods:

• Data-focused 
modelling

• Making informed 
decisions

• Role and formulation 
of priors

• Visualisation

• Computation

• Diverse data sources

Applications:

• Air quality and health: 
personalised decision support

• Spatial patterns in cancer: an
Australian Cancer Atlas

• Modelling complex queues

• Understanding gene 
expression

• Monitoring the health of the 
Great Barrier Reef

Focus in this presentation:



Air quality and health



Air quality and health



L. Dawkins, D. Willimson, KM(2019) 

Where is the clean air? A Bayesian decision framework for personalised

cyclist route selection.

Personalised environmental health app: pilot study

Current mobile 

apps and 

websites gives 

“one size fits 

all” guidance. 

Demand is for 

personalised air 

quality guidance, 

e.g. optimal 

cycle route from 

A to B.



General approach

1. Develop a Bayesian spatio-temporal model to create a map of 
PM2.5 exposures along potential routes, based on high 
resolution data from mobile air quality sensors.

2. Use a Bayesian decision framework to create a user-specific 
multiattribute utility function

Elicit a user’s journey preferences, regarding health impact of 
exposure to PM2.5, journey time and journey enjoyment, via an 
R shiny web app.

3. Identify personalised optimal route as the one that maximises 
the expectation of this function.



Data Collection: Where?

Cycle friendly routes 

Encompass bike racks & 
CityCycle stations

Different 
sections of CBD
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Data Collection: When?

Date Trip 1 Trip 2 Trip 3 Trip 4

Thurs 10th

May 
7:00-8:30
Pair: Laura & Steve

8:30-10:00
Pair: Leah & Matt

15:30-17:00
Pair: Jess C & Victor

17:00-18:30
Pair: Tarun & Laura

Sun 13th May 10:00-11:30
Pair: Laura & Phill

11:30-13:00
Pair: Lidwina & Tarun

Tues 15th May 7:00-8:30
Pair: Laura & Steve

8:30-10:00
Pair: Jess C & Victor

15:30-17:00
Pair: Omar & Miles

17:00-18:30
Pair: Lidwina & Jessie

Thurs 17th

May
7:00-8:30
Pair: Laura & Tarun

8:30-10:00
Pair: Victor & Laura

15:30-17:00
Pair: Jessie & Miles

17:00-18:30
Pair: Lidwina & Edgar

Sun 20th May 10:00-11:30
Pair: Laura & Phill

11:30-13:00
Pair: Kerrie & Gerard

Tues 22nd May 7:00-8:30
Pair: Laura & Steve

8:30-10:00
Pair: Jess C & Victor

15:30-17:00
Pair: Leah & Matt  

17:00-18:30
Pair: Laura & Jessie

Thurs 24th

May
7:00-8:30
Pair: Laura & Natalia

8:30-10:00
Pair: Jessie & Lidwina 

15:30-17:00
Pair: Edgar & Natalia

17:00-18:30
Pair: Leah & Matt 

https://www.brisbanetimes.com.au/national/queen

sland/brisbane-cycling-data-reveals-when-and-

where-people-hop-on-their-bikes-20170626-

gwywi2.html

Brisbane cycling count data

CityCycle paper: Mateo-Babiano et al. (2016)
How does our natural and built environment affect the use of
bicycle sharing? Transportation Research Part A, 94:295–307

Frequency: 
Literature on modelling mobile sensor data (e.g. Van den 

Bossche, J et al. (2015). Mobile monitoring for mapping spatial variation in 
urban air quality: Development and validation of a methodology based on an 
extensive dataset. Atmospheric Environment, 105:148-161.

Total of 48 laps of the 
route over 24 time slots 



The Air Quality Sensor: KOALA

• Measures PM2.5 every 5 seconds using the Dust 
Sensor

• Calibration: carried out tests in Botanic Gardens 
to ensure speed did not affect the PM2.5 
measurement, found it was important to have 
the dust sensor inlet facing backwards



Data: 

All laps

Day:
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• Covariate selection: expert and cyclist insight

• Exploratory data analysis to identify most 

important

• At time slot level

• PM2.5 in South Brisbane preceeding hour

• Temperature in CBD * Lane Type 

(on road/off road)

• Wind direction in CBD (West/East) * Lane Type

• Wind speed in South Brisbane * Lane Type

• Humidity in South Brisbane

• At observation level

• Traffic counts at 4 locations (every 30 mins) * Time Of Day * 

Lane Type

• Distance to major junction

• Distance to river 

lectronic intersection 
counts from BCCDeveloping the model



Developing the model: grid cell resolution

For day d=1,…,D, time slot t=1,…,Td, grid cell s=1,…,S 

INLA 

mesh

• Zdts is the 100x100m grid cell averaged 

log(PM2.5+1) for day d, time slot t, grid cell s

• η is a spatial random effect with exponential 

spatial correlation function.

• Specify prior means for fixed effects as 1 or -1 

for effects we have insight about the sign of the 

relationship, e.g. stronger winds => lower 

PM2.5

• Exponential spatial covariance structure 



Mean of random field SD of random field 

Results



Red = data left 

out of model 

Predicting data left out of model 

(day 7 afternoon – timeslots 3 and 4)

True:

Predicted:

Predictive capability



Developing the model: observation 

level resolution

For day d=1,…,D, time slot t=1,…,Td, lap =1,2, grid 

cell s=1,…,S, observation in grid cell s, j=1,…Jdtls

INLA 

mesh

Constrained refined Delaunay triangulation

Same mesh, 

alter projection 

matrix to map 

to observed 

locations

Z: covariates at the same resolution as the spatial-temporal grid

X: covariates at the same resolution as the observations (traffic)



Mean of random field SD of random field 

Results



Compare predicted y with true y

Predictive capability



T
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e:
P

red
icted

:
Time slot:

Lap:

Could use the model to predict in any location, or along a route at 

regular intervals etc.. 

Predictive capability



Barrier Model 
Haakon Bakka et al. (2018), arXiv:1608.03787v2

• In the barrier model “distance” is not the shortest distance, but rather a 

collection of all possible paths from one location to another; and the 

dependency between two points relies on all the paths that exists 

between them 

• Implemented using INLA – same computational speed
Barrier created in 

ArcMap each 

block is a barrier

https://arxiv.org/abs/1608.03787v2


Mean of random field SD of random field 

Results
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True:

Predicted:

Time slot:

Lap:



Accumulated Exposure along routes 

1

2



Making choices between routes 
Using ArcGIS to create 

case study route and 

covariates 

Blue route: faster but 

through more of CBD

Grey Route: slower and 

through less of CBD but 

on busy street 



• Find decision rule 𝑑∗(𝑦) that maximises the expected utility:

𝜃 is the set outcomes/states of nature/consequences, y is the data, R is 

the pay off, U is the utility function, p(𝜃|y) is the joint density of the 

outcomes given the data

Decision Framework



• Outcomes: health risk and time

• Our model gives us p(𝜃|y) 

• Elicit personal utility functions by asking about how risk 

averse someone is

• Fit a log-log surface based on responses 

• Could also incorporate criterion weights based on a personal 

preferences:

e.g. if pre-exiting health condition, U for health has more 

weight than U for time.

Decision Framework



Eliciting the Utility function

1. Enter cycle journey details:

where travel from/to, how flexible

with time of travel

2. Elicit personal journey preferences.

3. Best and worst case scenarios specified

within a “Journey Outcomes” table.

4. Use scenarios to determine decision-

relevant attributes, for:

𝑘1 = health impact

𝑘2 = journey time

𝑘3 = enjoyment







Journey A: Route 1, 15:30-17:00

Journey B: Route 1, 17:00-18:30

Journey C: Route 2, 15:30-17:00

Journey D: Route 2, 17:00-18:30

 If primary concern is health impact, then 

journey time: (𝑘1, 𝑘2, 𝑘3) = (0.6; 0.2; 0.2)

Expected utility: (𝑈𝐴, 𝑈𝐵, 𝑈𝐶, 𝑈𝐷) =

(0.716, 0.682, 0.686, 0.638)

 If primary concern is journey time, then health impact

(𝑘1, 𝑘2, 𝑘3) = (0.3; 0.6; 0.1)

Expected utility: (0.660, 0.623, 0.708, 0.614)

Case study

Journey Health Impact Journey Time Enjoyment

A -0.56 g/m3 10 mins 0.5 (prop. journey off-road)

B 0.44 11 0.45

C -0.29 8.5 0.24

D 1.28 10 0.20



1. What is the role of priors in high dimensional 
regression?

2. What is the role of uncertainty and how do we 
represent it?

3. What about computational scalability?

Scaling up



1. What is the role of priors?

Design matrix X (n by p), p > n

y = Xb + d + e ,   e ~ N(0, s2I)

d is a vector of mean shift parameters: want this to be sparse and 
allow for outliers in a small number of observations.

Priors: bj ~ Horseshoe(Ab)

dj ~ Horseshoe(Ad)

? How to choose priors for Ab , Ad

Wang X., Nott DJ, Drovandi CC, Mengersen K, 

Evans M (2018) Using history matching for prior 

choice. Technometrics 60, 445-460.



Partially informative priors



History matching priors

Parameter of interest: q

Class of prior distribution: p(q|l)

Problem is to choose l.

Treat the problem as one of model checking (for hypothetical data)



History matching priors

1. Choose a set of summary statistics Sj, based on data to be 
observed with density p(y|q).

2. For each statistic, specify the set of values S0
j that would be 

considered surprising if they were observed.



History matching priors

3.     Let p(Sj|l) be the prior predictive distribution for Sj.

4. Compute pj(l) = P(log p(Sj|l) ≥ log p(S0
j|l).

5 Make a decision based on a threshold chosen according to a 
“degree of surprise”.

Repeat in waves, to obtain non-implausible priors. 



Approximate Bayesian Computation

Calculate summary statistics S(y) from observed data y

for t in 1:T do

1. Sample q from the prior p(q)

2. Simulate pseudo-data y' from p(y|q)

3. Calculate S(y')

4. Accept q if ||S(y') – S(y)|| < e

end for

• No need for a likelihood

• Estimate complex models

• Simulate future unknowns (with uncertainty)



Example: sparse shrinkage regression

Surprising:

S1 = log s2 = log 16

S3 = refitted c-v R2 = 0.05

Unsurprising:

S2 = S1  = log 50

S4 = S3 = 0.95



2. What about uncertainty?

http://atlas.cancer.org.au

S. Cramb, E. Duncan, P. Baade, KM, et al. 



3. What about scalable computation?

ABC

ABCSMC
ABCSMC2

SMC

INLA
VB

…

MCMC

M. Sutton, E. Ebert, H. Xie, B. Liquet, C. Drovandi, D. Nott, KM, et al. 

Liquet B., 

Mengersen K., Pettitt A.N., 

Sutton M. (2017) Bayesian variable selection 

regression of multivariate responses for group data. 

Bayesian Analysis 4, 1039-1067. 



AutoStat https://autostat.com.au/

QUERY YOUR DATA

DATA PRE-PROCESSING

BUILD VISUALISATIONS

GAIN NEW INSIGHTS

DASHBOARD AND COLLABORATION

CODE-FREE MODELLING

AUTOMATE MODEL SCHEDULING

BAYESIAN OPTIMISATION

https://autostat.com.au/


Experimental design in the context of big data

1. Answer questions of interest: Find the optimal (or near optimal) design 
to answer the question and use the design as a ‘template’ for sub-
sampling the data.

2. Sequential learning: Apply a given design to incoming data or new 
datasets until the question of interest answered.

3. Assess data quality: Absence of design points/windows may indicate 
structured missingness or bias in the big dataset.

4. Assess model quality: Replicate designs can be ’laid over’ the big data 
for model checking (eg posterior predictives), concept drift etc.

5. Enlarge loss function: Include model misspecification, time constraints 
etc.

With acknowledgements to ACEMS and 
BRAG collaborators


