

Wandering the Bayesian countryside with 'brms'

- Example of a nonlinear mixed-effect model in clinical oncology -

Francois Mercier, Francesco Brizzi May 22, 2019 - Lyon

Acknowledgments

- Stan dev. team (including also support team for Wiki and Discourse)
- Paul Bürkner, author/maintainer of 'brms'
- Blogs from Andrew Gelman, Markus Gesmann ('Mages'), Solomon Kurz, Matti Vuorre, Kristoffer Magnusson ('Rpsychologist'), Henrik Singmann, Daniel Lüdecke ('Strenge Jacke'), ... and many others
- Project Data Sphere
- R and Rstudio core teams

Motivating example

mCRC patients treated with bevacizumab+chemo

- Tumor size measured on MRI or CT scans, collected every 8 weeks until week 24 and subsequently every 12 weeks until disease progression or death
- Response variable: SLD = sum of lesion diameter (mm)
- SLD is correlated with overall survival; understanding therapeutic effect on SLD time dynamics is critical

[1] Schmoll et al. J Clin Oncol 2012, 30:3588-3595

mFOLFOX6 mFOLFOX6 mFOLFOX6 + cediranib 20 mg + cediranib 30 mg + bevacizumab (n = 709)(n = 192)(n = 713)Treated Treated Treated (n = 705) (n = 191)* (n = 704) Discontinued (n = 617: 88%) Discontinued (n = 587: 83%) cediranib bevacizumab Condition Condition (n = 314)(n = 313) worsened worsened (n = 133) ΔF (n = 153)AE Voluntary (n = 116)Voluntary (n = 112)Lost to follow-up (n = 1) Lost to follow-up (n = 3)Other (n = 33)Other (n = 26) Discontinued (n = 647; 92%) Discontinued (n = 618; 88%) mFOLFOX6 mFOLFOX6 Condition (n = 305) Condition (n = 301) worsened worsened AE (n = 136)AE (n = 130)(n = 131) Voluntary (n = 146)Voluntary Sufficient no. $(n = 12)^{\dagger}$ Sufficient no. $(n = 13)^{\dagger}$ of cycles of cycles Missina (n = 9)Missina (n = 8)Lost to follow-up (n = 2)Lost to follow-up (n = 3) Other (n = 37)Other (n = 32)Patients receiving (n = 88; 12%) Patients receiving (n = 117: 16%) cediranib at bevacizumab at data cutoff data cutoff Patients receiving (n = 58; 8%) Patients receiving (n = 86; 12%) mFOLFOX6‡ at mFOLFOX6‡ at data cutoff data cutoff

HORIZON III study data [1]

Roche

Data display gives insights

[tidyverse+patchwork]

1. **Summarize** the time trend at the **population** and at the **individual** levels

2. Investigate if/which intrinsic factors (a.k.a. covariates) may contribute to **explaining the inter-individual variability** (IIV)

Our goals + Our plan

- 1. **Summarize** the time trend at the **population** and at the **individual** levels
 - Given a set of **candidate models**, retain the one offering the best **predictive performance**

- 2. Investigate if/which intrinsic factors (a.k.a. covariates) may contribute to **explaining the IIV**
 - From the best model (among candidates), extract individual parameter estimates summarizing the time dynamics of SLD and assess correlation with relevant covariates

Our goals + Our plan

- 1. **Summarize** the time trend at the **population** and at the **individual** levels
 - Given a set of **candidate models**, retain the one offering the best **predictive performance**

- 2. Investigate if/which intrinsic factors (a.k.a. covariates) may contribute to **explaining the IIV**
 - From the best model (among candidates), extract individual parameter estimates summarizing the time dynamics of SLD and assess correlation with relevant covariates

Candidate models

 $SLD_{ij} = BAS_i \cdot exp(-KS_i \cdot t_{ij}) + \varepsilon_{ij}$

Candidate models

10

Name	Structural form
Exponential decay	$SLD_{ij} = BAS_i \cdot exp(-KS_i \cdot t_{ij}) + \varepsilon_{ij}$
Stein-Fojo ^[1]	$SLD_{ij} = BAS_i \cdot (exp(KG_i \cdot t_{ij}) + exp(-KS_i \cdot t_{ij}) - 1) + \varepsilon_{ij}$
Wang ^[2]	$SLD_{ij} = BAS_i \cdot exp(KS_i \cdot t_{ij}) + KG_i \cdot t_{ij} + \varepsilon_{ij}$
Generalized Stein-Fojo ^[3]	$SLD_{ij} = BAS_i \cdot \left((1 - f) \cdot exp(KG_i \cdot t_{ij}) + f \cdot exp(-KS_i \cdot t_{ij}) \right) + \varepsilon_{ij}$

BAS=SLD at time 0 (mm); KS=Shrinkage rate (1/day); KG= Growth rate (1/day); f =Fraction (responder); $\varepsilon =$ Residual (mm).

Candidate models

Name	Structural model
Generalized Stein-Fojo	$SLD_{ij} = BAS_i \cdot \left((1 - f) \cdot exp(KG_i \cdot t_{ij}) + f \cdot exp(-KS_i \cdot t_{ij}) \right) + \varepsilon_{ij}$

Transformation	Param. P	Distribution of <i>P</i>	Distribution of θ	Distribution of ω
$BAS_i = exp(log BAS_i)$	logBAS	$\mathbb{N}ig(heta_{logBAS},\omega_{logBAS}^2ig)$	$\mathbb{N}(T_{logBAS}, S_{logBAS}^2)$	$\mathbb{N}(V_{logBAS}, U_{logBAS}^{2})^{+}$
$KS_i = exp(logKS_i)$	logKS	$\mathbb{N}ig(heta_{logKS},\omega_{logKS}^2ig)$	$\mathbb{N}(T_{logKS}, S_{logKS}^2)$	$\mathbb{N}(V_{logKS}, U_{logKS}^{2})^{+}$
$KG_i = exp(log KG_i)$	logKG	$\mathbb{N}ig(heta_{logKG},\omega_{logKG}^2ig)$	$\mathbb{N}(T_{logKG}, S_{logKG}^2)$	$\mathbb{N}(V_{logKS}, U_{logKS}^{2})^{+}$
$f_i = invlogit(logitf_i)$	logitf	$\mathbb{N}ig(heta_{logitf},\omega_{logitf}^2ig)$	$\mathbb{N}(T_{logitf}, S_{logitf}^2)$	$\mathbb{N}(V_{logitf}, U_{logitf}^{2})^{+}$
-	Е	$\mathbb{N}(0,\sigma^2)$	-	-

Note: sample from a MVN distribution to account for the correlation between hyper-parameters

Beware of the transformation!

Example:

Baseline SLD (*BAS*) are in a [2, 400] mm range, with mode typically between 50 and 100 mm.

- \mapsto logBAS in [log(2), log(400)] \approx [0.7, 6],
- → Mode: [log(50), log(100)]≈[4, 4.6]
- As $\mathbb{N}(0,1)$ ranges approx. from -3 to +3
- $\rightarrow logBAS \sim 4 + \mathbb{N}(0,1)$ approx. ranges in [1, 7]
- \rightarrow Equivalent to *BAS* covering the range [2.7, 1096]

To become familiar with distributions: <u>https://statdist.ksmzn.com/</u> and <u>https://github.com/jhelvy/stanTuner</u>

Fitting the exponential decay model with 'brms'

Checking the convergence

Help

Save & Close

NUTS (plots)

All chains

0

Model building

#ID	Structure	Family	Covariance	LOO-CV IC	SE	10x-CV IC	SE
00	Exp.decay	Gaussian	none	4095	61		
01	Exp.decay	Student	none	3840	60		
02	Stein-Fojo	Student	none	3469	55	4863	38
03	Stein-Fojo	Student	r(lbas, lks, lkg)	3473	54		
04	Wang	Student	none	4195	54		
05	Wang	Student	r(lbas, lks, lkg)	4197	54		
07	Generalized Stein-Fojo	Student	none	3431	56	4849	38
08	Generalized Stein-Fojo	Student	r(lbas, lks, lkg)	3417	57	4841	36

Note: Run time for 4 chains, 8000 iterations, on my average laptop (4 cores in parallel) ranges from 1.5 (model #01) to 1h25 min (model #08).

Model estimates summary

Generalized Stein-Fojo model (model #08)

scale reduction factor on split chains (at convergence, Rhat = 1).

```
Familv: student
  Links: mu = identity; sigma = identity; nu = identity
Formula: SLD2 ~ exp(lbas) * ((1 - (1/(1 + exp(-logitf)))) * exp((exp(lkg)/1000) * TIME) + (1/(1 + exp(-logitf))) * exp(-(exp(lks)/1000) * TIME))
         lbas ~ 1 + (1 | ID1 | UID)
         lks \sim 1 + (1 | ID1 | UID)
        lkg ~ 1 + (1 | ID1 | UID)
         logitf ~ 1 + (1 | ID1 | UID)
  Data: trndf (Number of observations: 460)
Samples: 4 chains, each with iter = 5000; warmup = 3000; thin = 1;
         total post-warmup samples = 8000
Group-Level Effects:
~UID (Number of levels: 75)
                                     Estimate Est.Error 1-95% CI u-95% CI Eff.Sample Rhat
                                                            0.67
sd(lbas Intercept)
                                         0.79
                                                    0.07
                                                                      0.95
                                                                                  280 1.02
sd(lks Intercept)
                                                                                  250 1.02
                                         0.74
                                                    0.14
                                                             0.48
                                                                      1.03
sd(lkg Intercept)
                                         1.75
                                                    0.28
                                                            1.25
                                                                      2.35
                                                                                  353 1.01
sd(logitf Intercept)
                                         1.92
                                                    0.30
                                                            1.40
                                                                      2.56
                                                                                  253 1.02
cor(lbas Intercept, 1ks Intercept)
                                         -0.25
                                                    0.16
                                                            -0.53
                                                                      0.09
                                                                                  650 1.00
cor(lbas Intercept, lkg Intercept)
                                         0.27
                                                    0.14
                                                            -0.02
                                                                      0.53
                                                                                 1193 1.00
cor(lks Intercept, lkg Intercept)
                                         -0.42
                                                    0.22
                                                           -0.75
                                                                      0.11
                                                                                  194 1.02
cor(lbas Intercept, logitf Intercept)
                                         0.05
                                                            -0.21
                                                                      0.28
                                                                                 1033 1.00
                                                    0.12
cor(lks Intercept, logitf Intercept)
                                         -0.53
                                                    0.20
                                                            -0.82
                                                                     -0.07
                                                                                  137 1.03
cor(lkg_Intercept,logitf_Intercept)
                                         0.72
                                                    0.11
                                                             0.46
                                                                      0.88
                                                                                  503 1.01
Population-Level Effects:
                 Estimate Est.Error 1-95% CI u-95% CI Eff.Sample Rhat
lbas Intercept
                               0.09
                                        4.33
                                                 4.68
                                                              158 1.01
                     4.51
lks Intercept
                     2.51
                               0.15
                                        2.21
                                                 2.79
                                                              339 1.01
lkg Intercept
                    -0.84
                               0.36
                                       -1.61
                                                -0.19
                                                              559 1.01
logitf Intercept
                     0.05
                               0.28
                                       -0.47
                                                 0.65
                                                              562 1.01
Family Specific Parameters:
      Estimate Est.Error 1-95% CI u-95% CI Eff.Sample Rhat
sigma
          1.47
                    0.20
                            1.13
                                      1.93
                                                  412 1.01
          1.05
                    0.05
                             1.00
                                      1.18
                                                  2884 1.00
nu
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
```

[brms]

Posterior vs. prior overlap

Posterior interpretation

Diagnostic plot: observation vs. prediction

Note: Yellow horizontal bars display 95% credible interval around the predicted mean value of the response distribution (*i.e.* excluding residual error).

Diagnostic plot: observation vs. prediction

Diagnostic plot: observation vs. prediction

[tidybayes]

(In-sample) posterior predictive checks

Central tendency

(In-sample) posterior predictive checks

Out of sample predictive check (1/4)

Out of sample predictive check (2/4)

Out of sample predictive check (3/4)

Out of sample predictive check (4/4)

Our goals + Our plan

- 1. Summarize the time trend at the population and at the individual levels
 - Given a set of candidate models, retain the one offering the best predictive performance

- 2. Investigate if/which intrinsic factors (a.k.a. covariates) may contribute to **explaining the IIV**
 - From the best model (among candidates), extract individual parameter estimates summarizing the time dynamics of SLD and assess correlation with relevant covariates

Covariate example 1: Male *vs.* **female**

Covariate example 2: baseline LDH correlated with baseline SLD

GoF

- LOO-IC=3345
- 10-fold CV IC=4634 (37) (vs. 4841 w/o LDH)

The packages bundle I used ...

Package	Link	Use
brms	https://paul-buerkner.github.io/brms/	Define and fit model, post-processing (summary, plots, predict,)
loo	https://mc-stan.org/loo/	Compare models (WAIC, LOO IC, k-fold CV IC)
tidybayes	http://mjskay.github.io/tidybayes/	Post-processing
shinystan	https://mc-stan.org/shinystan/	Check model convergence
stanTuner	https://github.com/jhelvy/stanTuner	Find the parameters of prior distributions (normal, beta, inv.gamma)

Conclusion

• Candidate models and priors

Adequate **transformation** of the parameters is **critical**; Be caution, as the prior and posterior distributions are scaled accordingly

- Recent wonderful R packages (on top of rstan) for easy Bayesian models implementation
- Use model for **inference**: ks, kg as efficacy metrics, influence of covariates

Doing now what patients need next