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Mechanistic models

QSP

Systems Biology



Phenomenological

or empirical models

Linear regression
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Nonlinear models to describe

and/or understand disease progression



Motivating example
mCRC patients treated with bevacizumab+chemo

• Tumor size measured on MRI or CT scans, collected

every 8 weeks until week 24 and subsequently every 12 

weeks until disease progression or death

• Response variable: SLD = sum of lesion diameter (mm)

• SLD is correlated with overall survival; understanding 

therapeutic effect on SLD time dynamics is critical
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HORIZON III study data [1] 

[1] Schmoll et al. J Clin Oncol 2012, 30:3588-3595



Data display gives insights

5[tidyverse+patchwork]



Our goals
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1. Summarize the time trend at the population and at the individual levels

2. Investigate if/which intrinsic factors (a.k.a. covariates) may contribute to explaining the inter-individual 

variability (IIV)
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• Given a set of candidate models, retain the one offering the best predictive performance

• From the best model (among candidates), extract individual parameter estimates 

summarizing the time dynamics of SLD and assess correlation with relevant covariates
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Candidate models

𝑆𝐿𝐷𝑖𝑗 = 𝐵𝐴𝑆𝑖 ∙ 𝑒𝑥𝑝 −𝐾𝑆𝑖 ∙ 𝑡𝑖𝑗 + 𝜀𝑖𝑗
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Treatment onset



Candidate models

Name Structural form

Exponential decay 𝑆𝐿𝐷𝑖𝑗 = 𝐵𝐴𝑆𝑖 ∙ 𝑒𝑥𝑝 −𝐾𝑆𝑖 ∙ 𝑡𝑖𝑗 + 𝜀𝑖𝑗

Stein-Fojo[1] 𝑆𝐿𝐷𝑖𝑗 = 𝐵𝐴𝑆𝑖 ∙ 𝑒𝑥𝑝 𝐾𝐺𝑖 ∙ 𝑡𝑖𝑗 + 𝑒𝑥𝑝 −𝐾𝑆𝑖 ∙ 𝑡𝑖𝑗 − 1 + 𝜀𝑖𝑗

Wang[2] 𝑆𝐿𝐷𝑖𝑗 = 𝐵𝐴𝑆𝑖 ∙ 𝑒𝑥𝑝 𝐾𝑆𝑖 ∙ 𝑡𝑖𝑗 + 𝐾𝐺𝑖 ∙ 𝑡𝑖𝑗 +𝜀𝑖𝑗

Generalized Stein-Fojo[3] 𝑆𝐿𝐷𝑖𝑗 = 𝐵𝐴𝑆𝑖 ∙ 1 − 𝑓 ∙ 𝑒𝑥𝑝 𝐾𝐺𝑖 ∙ 𝑡𝑖𝑗 + 𝑓 ∙ 𝑒𝑥𝑝 −𝐾𝑆𝑖 ∙ 𝑡𝑖𝑗 + 𝜀𝑖𝑗
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𝐵𝐴𝑆=SLD at time 0 (mm); 𝐾𝑆=Shrinkage rate (1/day); 𝐾𝐺= Growth rate (1/day); 𝑓 =Fraction (responder); 𝜀=Residual (mm).

[1] Stein et al. DOI: 10.1634/theoncologist.2008-0016; [2] Wang et al. DOI: 10.1038/clpt.2009.64; [3] Chaterjee et al. DOI:10.1002/psp4.12140. 



Candidate models

Name Structural model

Generalized Stein-Fojo 𝑆𝐿𝐷𝑖𝑗 = 𝐵𝐴𝑆𝑖 ∙ 1 − 𝑓 ∙ 𝑒𝑥𝑝 𝐾𝐺𝑖 ∙ 𝑡𝑖𝑗 + 𝑓 ∙ 𝑒𝑥𝑝 −𝐾𝑆𝑖 ∙ 𝑡𝑖𝑗 + 𝜀𝑖𝑗
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Transformation Param. 𝑃 Distribution of 𝑃 Distribution of 𝜃 Distribution of 𝜔

𝐵𝐴𝑆𝑖 = 𝑒𝑥𝑝 𝑙𝑜𝑔𝐵𝐴𝑆𝑖 𝑙𝑜𝑔𝐵𝐴𝑆 ℕ 𝜃𝑙𝑜𝑔𝐵𝐴𝑆, 𝜔𝑙𝑜𝑔𝐵𝐴𝑆
2 ℕ 𝑇𝑙𝑜𝑔𝐵𝐴𝑆, 𝑆𝑙𝑜𝑔𝐵𝐴𝑆

2
ℕ 𝑉𝑙𝑜𝑔𝐵𝐴𝑆, 𝑈𝑙𝑜𝑔𝐵𝐴𝑆

2 +

𝐾𝑆𝑖 = 𝑒𝑥𝑝 𝑙𝑜𝑔𝐾𝑆𝑖 𝑙𝑜𝑔𝐾𝑆 ℕ 𝜃𝑙𝑜𝑔𝐾𝑆, 𝜔𝑙𝑜𝑔𝐾𝑆
2 ℕ 𝑇𝑙𝑜𝑔𝐾𝑆, 𝑆𝑙𝑜𝑔𝐾𝑆

2
ℕ 𝑉𝑙𝑜𝑔𝐾𝑆, 𝑈𝑙𝑜𝑔𝐾𝑆

2 +

𝐾𝐺𝑖 = 𝑒𝑥𝑝 𝑙𝑜𝑔𝐾𝐺𝑖 𝑙𝑜𝑔𝐾𝐺 ℕ 𝜃𝑙𝑜𝑔𝐾𝐺 , 𝜔𝑙𝑜𝑔𝐾𝐺
2 ℕ 𝑇𝑙𝑜𝑔𝐾𝐺 , 𝑆𝑙𝑜𝑔𝐾𝐺

2
ℕ 𝑉𝑙𝑜𝑔𝐾𝑆, 𝑈𝑙𝑜𝑔𝐾𝑆

2 +

𝑓𝑖 = 𝑖𝑛𝑣𝑙𝑜𝑔𝑖𝑡 𝑙𝑜𝑔𝑖𝑡𝑓𝑖 𝑙𝑜𝑔𝑖𝑡𝑓 ℕ 𝜃𝑙𝑜𝑔𝑖𝑡𝑓, 𝜔𝑙𝑜𝑔𝑖𝑡𝑓
2 ℕ 𝑇𝑙𝑜𝑔𝑖𝑡𝑓 , 𝑆𝑙𝑜𝑔𝑖𝑡𝑓

2
ℕ 𝑉𝑙𝑜𝑔𝑖𝑡𝑓, 𝑈𝑙𝑜𝑔𝑖𝑡𝑓

2 +

- 𝜀 ℕ 0, 𝜎2 - -

Note: sample from a MVN distribution to account for 

the correlation between hyper-parameters



Beware of the transformation!
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To become familiar with distributions: https://statdist.ksmzn.com/ and https://github.com/jhelvy/stanTuner

𝜃𝑙𝑜𝑔𝐵𝐴𝑆 = 1

Example:

Baseline SLD (𝐵𝐴𝑆) are in a [2, 400] mm range, with

mode typically between 50 and 100 mm.

 𝑙𝑜𝑔𝐵𝐴𝑆 in [log(2), log(400)]≈[0.7, 6],

 Mode: [log(50), log(100)]≈[4, 4.6]

As ℕ 0,1 ranges approx. from -3 to +3

 𝑙𝑜𝑔𝐵𝐴𝑆~4 + ℕ 0,1 approx. ranges in [1, 7] 

 Equivalent to 𝐵𝐴𝑆 covering the range [2.7, 1096]

𝜃𝑙𝑜𝑔𝐵𝐴𝑆 = 4

Baseline SLD

D
e
n

si
ty

https://statdist.ksmzn.com/
https://github.com/jhelvy/stanTuner


Fitting the exponential decay model with ‘brms’

mExpDecay<-bf(SLD~exp(lbas)*exp(-(exp(lks)/1000)*TIME),

lbas~1+(1|UID), lks~1+(1|UID), nl=TRUE)
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Priorm01<-c(set_prior("normal(4, 1)", class="b", nlpar="lbas"),

set_prior("normal(0, 1)", class="b", nlpar="lks"), 

set_prior("normal(0, 1)", class="sd", nlpar="lbas"),

set_prior("normal(0, 1)", class="sd", nlpar="lks"))

m01<-brm(mExpDecay, data=trndf, prior=Prior01, family=gaussian(), 

iter=2000, chains=4, warmup=1000, seed=1234, cores=4)

[brms]

Structural+error models

Priors

Run



Checking the convergence

14[shinystan]



#ID Structure Family Covariance LOO-CV IC SE 10x-CV IC SE

00 Exp.decay Gaussian none 4095 61

01 Exp.decay Student none 3840 60

02 Stein-Fojo Student none 3469 55 4863 38

03 Stein-Fojo Student r(lbas, lks, lkg) 3473 54

04 Wang Student none 4195 54

05 Wang Student r(lbas, lks, lkg) 4197 54

07 Generalized Stein-Fojo Student none 3431 56 4849 38

08 Generalized Stein-Fojo Student r(lbas, lks, lkg) 3417 57 4841 36

Model building
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Note: Run time for 4 chains, 8000 iterations, on my average laptop (4 cores in parallel) ranges from 1.5 (model #01) to 1h25 min (model #08).

[brms+loo] https://avehtari.github.io/modelselection/

https://avehtari.github.io/modelselection/


Model estimates summary
Generalized Stein-Fojo model (model #08)

16[brms]



Posterior vs. prior overlap
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What do we do about this? 

Should we adjust our prior?

No … but now, the posterior can become 

the prior for the analysis of new data



Posterior interpretation
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Mean [95%CI]: 90.9 [75.6, 108] Mean [95%CI]: 12.3 [9.13, 16.3]

Halving time (days): 
𝑙𝑛 2

−𝑘𝑠
× 103 = 58 days

Mean [95%CI]: 4.34 [0.20, 0.83] x10-1

Doubling time: 
𝑙𝑛 2

𝑘𝑔
× 103 =1597 days

Fraction of target 

tissue sensitive to 

treatment
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Diagnostic plot: observation vs. prediction

[tidybayes]

Note: Yellow horizontal bars display 95% credible interval 

around the predicted mean value of the response

distribution (i.e. excluding residual error).
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Diagnostic plot: observation vs. prediction

[tidybayes]
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Diagnostic plot: observation vs. prediction

[tidybayes]

The model needs refinement to handle LLoQ



(In-sample) posterior predictive checks
Central tendency

22

Halving time (days): 
𝑙𝑛 2

−𝑘𝑠
× 103 = 58 days ≈ 8 weeks

Baseline SLD (mm)

90.9 [75.6, 108]

Doubling time: 
𝑙𝑛 2

𝑘𝑔
× 103 =1597 days

≈ 228 weeks



(In-sample) posterior predictive checks
IIV
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The model describes the individual time profiles reasonably well

Fitted individual mean+95%CI values

overlaid to obs°



Out of sample predictive check (1/4)
Fit the model with 20% records removed; Confront predictions vs. blinded observations
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open circle=‘blinded’ observations



Out of sample predictive check (2/4)
Fit the model with 20% records removed; Confront predictions vs. blinded observations
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Out of sample predictive check (3/4)
Fit the model with 20% records removed; Confront predictions vs. blinded observations
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Out of sample predictive check (4/4)
Fit the model with 20% records removed; Confront predictions vs. blinded observations
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Our goals  Our plan

1. Summarize the time trend at the population and at the individual levels

2. Investigate if/which intrinsic factors (a.k.a. covariates) may contribute to explaining the IIV
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• Given a set of candidate models, retain the one offering the best predictive performance

• From the best model (among candidates), extract individual parameter estimates 

summarizing the time dynamics of SLD and assess correlation with relevant covariates



Covariate example 1: Male vs. female

GoF

• LOO-IC=3411

• 10-fold CV IC=5054 (39) 

(vs. 4841 w/o Sex)
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Covariate example 2: baseline LDH correlated with baseline SLD

GoF

• LOO-IC=3345

• 10-fold CV IC=4634 (37) 

(vs. 4841 w/o LDH)
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The packages bundle I used …

31

Package Link Use

brms https://paul-buerkner.github.io/brms/ Define and fit model, post-processing (summary, plots, predict, …)

loo https://mc-stan.org/loo/ Compare models (WAIC, LOO IC, k-fold CV IC)

tidybayes http://mjskay.github.io/tidybayes/ Post-processing

shinystan https://mc-stan.org/shinystan/ Check model convergence

stanTuner https://github.com/jhelvy/stanTuner Find the parameters of prior distributions (normal, beta, inv.gamma)

https://paul-buerkner.github.io/brms/
https://mc-stan.org/loo/
http://mjskay.github.io/tidybayes/
https://mc-stan.org/shinystan/
https://github.com/jhelvy/stanTuner


Conclusion
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• Candidate models and priors

Adequate transformation of the parameters is critical; Be caution, as the prior and posterior distributions are 

scaled accordingly

• Recent wonderful R packages (on top of rstan) for easy Bayesian models implementation

• Use model for inference: ks, kg as efficacy metrics, influence of covariates



Doing now what patients need next
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