

Bayesian sequential integration within a preclinical PK-PD modeling framework Lessons learned

Fabiola La Gamba,

Tom Jacobs, Jan Serroyen, Helena Geys, Christel Faes

Bayes 2019, 22 May, Lyon

Interuniversity Institute for Biostatistics and statistical Bioinformatics

Drouville, Dragonfish Drouville is a patient, graphic designer and artist from Argentina who has survived Multiple Myeloma and a relapse.

Outline

- Case Study & Proposed (P)K-PD model for synergy
- Bayesian Sequential Integration: Modeling Aspects
 - 1. Prior specification
 - 2. Choice of random effect
 - 3. Design of experiments
- Simulation study
- Discussion

Case Study & Proposed (P)K-PD model for synergy

Case study

Aim: To assess the safety (decrease of body temperature) resulting from the co-administration of marketed and novel compounds using 11 in-vivo trials

One specific dose combination for each trial, collected over different time points

Trial	1	2	3	4	5	6	7	8	9	10	11
Marketed compound dose (mpk)	10	2.5	10	0.63	10	0.16	2.5	0.63	0.16	0.04	0.04
Novel compound dose (mpk)	40	40	10	40	2.5	40	10	10	10	10	40

Case study – Example from trial 1

No change

More pronounced decrease, later maximal effect

Proposed (P)K-PD model for synergy

Turnover model assuming that a **virtual** concentration of the marketed compound inhibits the production of body heat

$$\frac{d\bar{R}_{it}}{dt} = k_{in} \left(1 - \frac{I_{max}C_{it}}{IC_{50} + C_{it}} \right) - k_{out}\bar{R}_{it} \qquad R_{i0} = k_{in}/k_{out}$$

The novel compound increases the potency of the marketed compound

Initial analysis: Bayesian pooling

7

Bayesian sequential integration

The posteriors from one trial are used to determine the hyperparameters of the priors of the next trial.

Benefits:

- Analyze the data from every single trial immediately, instead of waiting for the end of data collection
- The parameter estimates resulting from each integration step may be used for the **design** of the next trials

Challenge:

Performing a complex nonlinear hierarchical model on small data during the first integration steps may cause **practical identifiability issues**

Bayesian Sequential Integration: Modeling Aspects 1. Prior Specification

Prior specification – Methods

Different priors chosen for I_{max} :

- Prior used for the initial analysis (SD=0.02)
- Prior with doubled SD (SD=0.04)
- Uniform distribution (SD=0.29)

Analysis run on trials 1, 2, 3 pooled together (to allow for identifiability of parameter β)

Prior for I_{max} : SD=0.02

Janssen

Prior for I_{max} : SD=0.04

Janssen

Prior for I_{max} : SD=0.29

janssen

13

Parameter	I_{max} SD=0.02	I_{max} SD=0.04	<i>I_{max}</i> SD=0.29
k _e	0.53 (0.39; 0.71)	0.55 (0.41; 0.71)	0.61 (0.44; 0.82)
kout	1.15 (0.88; 1.52)	0.91 (0.63; 1.29)	0.78 (0.48; 1.12)
I _{max}	0.15 (0.12; 0.19)	0.20 (0.14; 0.27)	0.24 (0.17; 0.34)
\overline{R}_0	37.12 (36.99; 37.26)	37.15 (37.03; 37.27)	37.16 (37.04; 37.28)
α	-1.42 (-2.09; -0.51)	-1.58 (-2.08; -1.00)	-1.55 (-2.04; -1.09)
β	-2.85 (-7.34; -0.15)	-0.51 (-3.29; 0.48)	-0.13 (-1.17; 0.67)
$\sigma_{R_0}^2$	0.31 (0.19; 0.51)	0.26 (0.15; 0.44)	0.25 (0.15; 0.41)
σ_R^2	0.41 (0.36; 0.48)	0.41 (0.36; 0.48)	0.41 (0.36; 0.48)

The less informative the prior is specified, the larger the bias is observed. The correlated parameters compensate each other

Take home message n.1 It is better to use informative priors, whenever possible

Bayesian Sequential Integration: Modeling Aspects 2. Choice of random effect

Choice of random effect – Methods

Different random effect choices considered:

- Random baseline
- Random k_{out}
- Random $k_{in} \rightarrow$ convergence issues

Model run on all trials pooled together

Posterior predictions and predictive intervals, trial 1

IDEAS

Random baseline model

Distributions of the posterior means of subject-specific random effects

Random baseline model

Random k_{out} model

Jansser

PHARMACEUTICAL COMPANIES OF

Johnson & Johnson

18

IDEAS

Distributions of the posterior means of subject-specific random effects

Random baseline model Treatment groups Treatment groups 20 1.0 Vehicle Vehicle Marketed compound Marketed compound Novel compound Novel compound Combination Combination 0.8 1.5 0.6 Density Density **Overcompensation** 1.0 between k_{out} and β 4.0 0.5 0.2 0.0 0.0 1.0 1.5 2.0 36.5 37.0 37.5 38.0 38.5 39.0 0.0 0.5 R_0 k_{out}

IDEAS

 k_{out} for combination group

Random k_{out} model

Distributions of the posterior means of subject-specific random effects

Random baseline model

Random *k*_{out} model

Take home message n.2 Better to allocate the random effect on a parameter that is easier to estimate, to avoid overcompensations

Bayesian Sequential Integration: Modeling Aspects 3. Design of experiments

Design of experiments – Methods

Different types of sequential integrations compared with simple pooling:

- 1. Pooling of 1 trial at a time*, keeping the original trial order
- 2. Pooling of 1 trial at a time*, order permutation
- 3. Pooling of 3 trials at a time, keeping the original trial order
- 4. Sequentially pooling 5 "optimal" trials: sampled from the existing data so that each of them contains all possible dose combinations

*The first three trials were pooled together to guarantee the identifiability of β .

22

Posterior predictions and predictive intervals, trial 1

IDEAS

1. Sequential integration, 1 trial at a time

2. Sequential integration, permuted order

Posterior predictions and predictive intervals, trial 1

IDEAS

1. Sequential integration, 1 trial at a time

Posterior predictions and predictive intervals, trial 1

IDEAS

1. Sequential integration, 1 trial at a time

4. Sequential integration, optimal trials

Posterior predictions, trial 1

Bayesian integration type

- 1. One study at a time
- 2. Permuted order
- Three studies at a time
- 4. Five optimal studies
- Simple pooling

Practical identifiability issues

at first integration steps when trials are **poorly designed**

Take home message n.3 Trial design plays a crucial role in the performance of Bayesian sequential integration

Simulation study

Aim

To compare Bayesian pooling with sequential integration using linear and nonlinear models (1000 simulation runs):

- 1. Linear model
- 2. One-compartment PK model
- 3. Sigmoidal Emax model
- For each model, both absence and presence of inter-individual variability (IIV) is assessed → different scenarios
- For each scenario, informative and uninformative prior distributions are considered → different sub-scenarios

All scenarios reflect the setting of **pre-clinical trials** (small sample size, one or few doses per trial).

Results

		Non- hierarchical	Hierarchical
Linear model	Informative	\checkmark	\checkmark
	Uninformative	\checkmark	\checkmark
1-comp PK model*	Informative	\checkmark	\checkmark
	Uninformative	\checkmark	1
Sigmoidal Emax model	Informative	\checkmark	\checkmark
	Uninformative	\checkmark	×

* Linear kinetics, non-linear over time, sequential integration over doses

IDEAS

Discussion

Discussion

- The Bayesian sequential integration is an appealing approach, as it allows to analyze every single trial immediately without reanalyzing the data up to the current study
- If a linear model is performed and the parameters are not correlated, this technique produces unbiased and precise estimates
- Mitigating the risk of **bias** when a **nonlinear** model is performed can be achieved via:
 - Carefully designed integration of studies, to avoid the risk of practical identifiability issues
 - The specification of informative prior distributions
 - The allocation of random effects on parameters that are easier to estimate

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 633567.

Drouville, Dragonfish Drouville is a patient, graphic designer and artist from Argentina who has survived Multiple Myeloma and a relapse.

