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The Regression Discontinuity Design – what is it?

I The Regression Discontinuity Design (RDD) was first introduced in
the econometrics literature during the 1960s[5].

I The original idea was to exploit policy thresholds to estimate the
causal effect of an educational intervention.

I The RDD has proven to be very useful when treatment is assigned
based on a pre-specified rule linked to a continuous variable . For
example:

- Antiretroviral HIV drugs might be prescribed when a patients CD4
count is less than 200 cells/mm3 [1];

- Statins might be prescribed when a patient’s 10-year risk of a
cardiovascular event (10-year CVD risk score) exceeds a certain
threshold (e.g. in the UK previously 20% and now 10% ) [2]
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RDD – key idea

I The key idea is that the threshold acts like a randomizing device

I For those who are familiar with this: it is an instrumental variable .

I This is possible if we consider the units close to the threshold as
coming from the same population in which the assignment variable
has its own natural (random) variability ⇒ (conditional)
exchangeability
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RDD

Education example

I We want to quantify the effect of going to college on future income
I Comparing the income of individuals who attended college and

those who did not will not provide us with the effect of college
attendance alone
I Confounders such as social class, ability, motivation etc will make

this difficult

I That is a classic problem of observational studies
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Education Example continued

I Often college scholarships are given on the basis of grades obtained
in final school examinations, eg if the average exam grade is above
75%, the student gets a scholarship

I Suppose one student has an average of 74% and another an average
of 76%:
I Can we really consider them as coming from different populations

especially if in other respects (eg family income, post code etc) they
are similar?

I Given that there is natural variability in exam performance even for
the same individual?
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RDD

Public health example

I Many medicines are prescribed according to a particular guideline
I Antiretroviral HIV drugs prescribed when patient’s CD4 count is less

than 200 cells/mm3[1];
I Blood pressure medication is prescribed when patient’s BP is

140/90mmHg or above;
I Statins are prescribed when eg 10 year Framingham risk score is over

20%

I Consider a population of HIV patients and suppose patient A has a
CD4 count of 195 and patient B has a count of 205 cells/mm3

I Theoretically , patient A gets the drugs while patient B does not
I Can we really consider them as coming from different populations?

I If the two are the same in every other relevant respect (eg individual
circumstances etc)

I Given that there is a natural variability in CD4 counts and in the
instruments used to measure them?
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Application: prescription of statins in primary care UK

Statins

I A class of drugs used to lower cholesterol and prescribed to prevent
heart disease
I Trials show an average reduction of LDL cholesterol of ≈ 2 mmol/l
I UK NHS guidelines are to prescribe statins to individuals without

previous CVD if their 10 year CVD score exceeds 20%(10%)

I Data: Clinical practice database containing routine GP prescriptions as well as
information on the variables that determine them (THIN)

I 587 general practices in the UK, covering 5.2% of the (2013) UK population —
over 10 million individuals living in the UK and fairly representative of the
general population

I Individual characteristics (sex, date of birth, date of registration, proxies of
socioeconomic status)

I Medical history (GP visits, prescriptions, exams)

I Relevant clinical outcomes (LDL level, CHD events, deaths)
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Notation (in our application)

I X = continuous forcing/assignment variable (risk score);

I Z = threshold indicator (is risk score above/below 20%);

I T = treatment administered (statin prescription);

I C ≡ (O,U) = observed and unobserved covariates (social class,
co-morbidities);

I Y = continuous outcome (LDL cholesterol level).

X and Z

I X is the continuous variable and X = x0 at the threshold

I Z = 1 if X ≥ x0 and Z = 0 if X < x0
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Sharp vs Fuzzy RDDs
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RDD – Assumptions

1 Unconfoundedness: Y⊥⊥Z | (T,C, X) guarantees that the units
just above and below the threshold are “similar”.

2 Independence of Guidelines: Z⊥⊥C | X the threshold is set by an
external body, e.g. a government agency.

3 Monotonicity : No decision-maker systematically defies the
guidelines - i.e. GPs don’t only prescibe to those below the
threshold(!)

4 Continuity : E(Y |Z,X = x, T,C) is continuous at in x (at x0) for
T = 0, 1
If the outcome is discontinuous then the effect of threshold
indicator will be confounded with the effect of whatever is
responsible for the discontinuity

1-3 are instrumental variable assumptions
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The Causal Effect

- Denote xc = x− x0 to be the forcing/assignment variable centred
at x0

- Consider the linear model

E(Y ) = µil = β0l + β1lx
c
il l = above, below

- NB: “close” to the threshold, the covariates C are balanced, so no
need to control for them (kind of...) — but: how close is close?

- The issue of bandwidth selection (how close) is still unresolved
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Estimation

Sharp RDD

- The formula for the sharp causal estimator is

ATE = E(Y |Z = 1)− E(Y |Z = 0)− E(T |Z = 0) = ∆β = β0a − β0b

Fuzzy RDD

- The formula for the fuzzy causal effect estimator is

LATE =
E(Y |Z = 1)− E(Y |Z = 0)

E(T |Z = 1)− E(T |Z = 0)
=

∆β

∆π
=
β0a − β0b
πa − πb

I πl is an estimate of Pr(T = 1|Z = z), e.g. the chance of being
treated when above or below the threshold.
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RDD – examples

I Increasingly popular in Public Health/Epidemiology

I HIV: The CD4 count is often used to deterimine drug assignment[1].

I HPV: The date of birth of a woman (pre/post vaccine
availability)[4].

I Prostate cancer: PSA is a chemical produced by the body and used
to determine treatment[3].

I Cholesterol: 10-year CVD risk score to determine statin
treatment[2].
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Problems with the LATE and Bayesian solutions

I The denominator of LATE can be very small (i.e. πa ≈ πb)
I Informative priors on the relevant parameters can encode knowledge

and assumptions about these two probabilities so that the resulting
estimator does not explode to ∞

Other advantages of Bayes

I Estimation of variances and intervals does not rely on asymptotics
— just a byproduct of MCMC procedures + can naturally include
more appropriate models (vs 2SLS)

I Can encode more complex models to account for different levels of
compliance in a straightforward manner
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Bayesian modelling: µil = β0l + β1lx
c
il

1. Informative prior on the slopes, based on clinical expert opinions
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Bayesian modelling: µil = β0l + β1lx
c
il

2. Informative priors on the intercepts:
β0b ∼ Normal(m0, s

2
0) and β0a = β0b + φ

I Weakly informative prior: φ ∼ Normal(0, 2)
I “Skeptical” prior on the effect of treatment, which is assumed to be

null

I Strongly informative prior: φ ∼ Normal(−2, 1)
I “Enthusiastic” prior, strongly based on the available information

coming from the RCTs (reduction of 2 mmol/l)1

I Relatively small variance to represent strong belief in the trials

3. Informative prior on the probability of treatment:

logit(πa) ∼ Normal(2, 1), logit(πb) ∼ Normal(−2, 1)

I NB: implies that ∆π = πa − πb is centered far from 0 but can vary
I Helps stabilise the denominator and thus the LATE

1Ward et al (2007) [6]
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Bayesian modelling: logit(πl)
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Bayesian modelling: logit(πl)

Prior density estimates for probability of treatment
 above and below the threshold
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Simulation study results

Bandwidth = 0.25 (fairly large!), Treatment effect size ∼ Normal(−2, 0.52)

LATE estimation (Strong IV)
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Binary outcomes

I Most of the RDD literature focusses on continuous outcomes, but
often in biostatistics, practitioners are interested in binary outcomes

Example

I Did LDL cholesterol levels drop to recommended levels after statin
prescription?

I Guidelines in the UK state that LDL cholesterol levels should be
below 2 mmol/l for patients who are at high risk (e.g. with multiple
co-morbidities)

I And below 3 mmol/l for low risk patients

I Using the same data we dichotomised the LDL cholesterol outcome
such that Y = 1 is LDL cholesterol levels are below 2mmol/l (or 3
mmol/l) and Y = 0 otherwise
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LDL cholesterol levels
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Binary outcomes

I We can draw on the IV-based Multiplicative Structural Mean
Models (MSMMs), which consider the causal Risk Ratio for the
Treated (RRT)

RRT =
E[Ea(Y | Z) | T = 1]

E[Eb(Y | Z) | T = 1]

= 1− E(Y | Z = 1)− E(Y | Z = 0)

E(Y T̄ | Z = 1)− E(Y T̄ | Z = 0)

when a set of assumptions holds (log-linear in t + no T -Z multiplicative

interaction)[2]
I Known issues of standard estimators (e.g. generalised method of moments):

I May give absurd results (lower 95% interval estimate < 0)
I The data for the product term (Y T̄ ) are usually sparse ⇒

implausibly wide interval estimates

I Can “fix” it by using suitable constraints — similar to those used to
stabilise the denominator of the LATE in the continuous case
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Constraining the models (1)

I The RRT is expressed as a function of a set of parameters (in the
same spirit as the LATE)

RRT = f (exp(αa)− exp(αb))

where:
I αa and αb are the intercepts in the log-linear models for

E(Y | Z = 1) and E(Y | Z = 0)
I For convenience, model yil ∼ Poisson(µil) — consistent with MSMM

assumptions

I Typically, we would put priors on αa and αb, which would induce a
prior on RRT

I But: can also put a prior on RRT to ensure that it is > 0 and
another on αa. This would then induce a prior on αb, e.g.

RRT ∼ Gamma(3, 1) αa ∼ p(αa) and αb = g (RRT, αa)
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Results
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Sensitivity/Range analysis

I For both continuous and binary outcomes we have developed a
number of estimators which are based on slightly different
assumptions about e.g. how the denominator works or whether data
are sparse

I All of them (and indeed the standard RDD/IV estimators) should
be used in any real context

I In a best case scenario all of the estimates have substantial overlap
(as was the case in our application)

I When they do not then certainly prefer the ones we develop(!) and
use the simulations to understand why there are discrepancies

I I am always reluctant to give a single point estimate with a credible
interval – plausible ranges are better
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Systematic RDDs

There is a lot of potential for making RDDs less opportunistic and more
systematic

Picture this...

I Imagine there is a new drug on the market - it’s passed trials etc

I The NHS wants to know: where do we set the threshold to optimise
benefits (minimise cost?)

I Some rough idea comes from trials but we know they have low
external validity

I Run 3/4 RDDs with different thresholds in different sub-populations

I Is this any less ethical than changing the guidelines as evidence from
primary care emerges?
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Conclusions

I “Real World Evidence” (i.e. Electronic Health Record data) is
increasingly popular in research
I Causal estimates are still tricky because of issues with self-selection,

confounding, etc

I Useful to (critically!) explore specific designs to balance
characteristics
I RDD
I Interrupted time series
I ...

I Bayesian modelling particularly helpful
I Because data are available in registries, administrative databases,

there are likely to be RCTs (may be on small samples/time frames)
to base priors on

I Design alone may not be sufficient to obtain balance — may need to
impose constraints ⇒ explicit and typically relatively easy in a full
Bayesian framework
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Thank you!
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