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The Regression Discontinuity Design — what is it?

» The Regression Discontinuity Design (RDD) was first introduced in
the econometrics literature during the 1960s[5].

P The original idea was to exploit policy thresholds to estimate the
causal effect of an educational intervention.

» The RDD has proven to be very useful when treatment is assigned
based on a pre-specified rule linked to a continuous variable . For
example:

- Antiretroviral HIV drugs might be prescribed when a patients CD4
count is less than 200 cells/mm? [1];

- Statins might be prescribed when a patient’s 10-year risk of a
cardiovascular event (10-year CVD risk score) exceeds a certain
threshold (e.g. in the UK previously 20% and now 10% ) [2]
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RDD - key idea

> The key idea is that the threshold acts like a randomizing device
» For those who are familiar with this: it is an instrumental variable .

P> This is possible if we consider the units close to the threshold as
coming from the same population in which the assignment variable
has its own natural (random) variability = (conditional)
exchangeability
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RDD

Education example

> We want to quantify the effect of going to college on future income

» Comparing the income of individuals who attended college and
those who did not will not provide us with the effect of college
attendance alone

» Confounders such as social class, ability, motivation etc will make
this difficult

> That is a classic problem of observational studies
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Education Example continued

» Often college scholarships are given on the basis of grades obtained
in final school examinations, eg if the average exam grade is above
75%, the student gets a scholarship

> Suppose one student has an average of 74% and another an average
of 76%:

» Can we really consider them as coming from different populations
especially if in other respects (eg family income, post code etc) they
are similar?

P Given that there is natural variability in exam performance even for
the same individual?
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Public health example

» Many medicines are prescribed according to a particular guideline
> Antiretroviral HIV drugs prescribed when patient's CD4 count is less
than 200 cells/mm?[1];
» Blood pressure medication is prescribed when patient’'s BP is
140/90mmHg or above;

> Statins are prescribed when eg 10 year Framingham risk score is over
20%

» Consider a population of HIV patients and suppose patient A has a
CD4 count of 195 and patient B has a count of 205 cells/mm3
> Theoretically , patient A gets the drugs while patient B does not
» Can we really consider them as coming from different populations?
> If the two are the same in every other relevant respect (eg individual
circumstances etc)
> Given that there is a natural variability in CD4 counts and in the
instruments used to measure them?
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Statins

> A class of drugs used to lower cholesterol and prescribed to prevent
heart disease

» Trials show an average reduction of LDL cholesterol of ~ 2 mmol/I
» UK NHS guidelines are to prescribe statins to individuals without
previous CVD if their 10 year CVD score exceeds 20%(10%)

» Data: Clinical practice database containing routine GP prescriptions as well as
information on the variables that determine them (THIN)

> 587 general practices in the UK, covering 5.2% of the (2013) UK population —
over 10 million individuals living in the UK and fairly representative of the
general population

» Individual characteristics (sex, date of birth, date of registration, proxies of
socioeconomic status)

> Medical history (GP visits, prescriptions, exams)

> Relevant clinical outcomes (LDL level, CHD events, deaths)
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Notation (in our application)

» X = continuous forcing/assignment variable (risk score);
» 7 = threshold indicator (is risk score above/below 20%);
» T = treatment administered (statin prescription);

» C = (0O,U) = observed and unobserved covariates (social class,
co-morbidities);

» Y = continuous outcome (LDL cholesterol level).

X and Z

» X is the continuous variable and X = x( at the threshold
> Z7=1ifX >zpand Z =0 if X < xg
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Sharp vs Fuzzy RDDs

Sharp design:Risk Score vs. LDL Sharp design:Risk Score vs. p(T=1)
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RDD — Assumptions

1 Unconfoundedness: Y 1L Z | (T, C, X) guarantees that the units
just above and below the threshold are “similar”.

2 Independence of Guidelines: Z 11L.C' | X the threshold is set by an
external body, e.g. a government agency.

3 Monotonicity: No decision-maker systematically defies the
guidelines - i.e. GPs don't only prescibe to those below the
threshold(!)

4 Continuity: E(Y|Z,X =z, T, C) is continuous at in x (at xg) for
T=0,1
If the outcome is discontinuous then the effect of threshold
indicator will be confounded with the effect of whatever is
responsible for the discontinuity

1-3 are instrumental variable assumptions
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The Causal Effect

- Denote ¢ = z — x( to be the forcing/assignment variable centred
at xg

- Consider the linear model

EY) = pa = Bo + Buzxj | = above, below

- NB: “close” to the threshold, the covariates C' are balanced, so no
need to control for them (kind of...) — but: how close is close?

- The issue of bandwidth selection (how close) is still unresolved
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Estimation

Sharp RDD

- The formula for the sharp causal estimator is

ATE=E(Y|Z=1)—E(Y|Z=0)—E(T|Z=0) = Ag = foa

Fuzzy RDD

- The formula for the fuzzy causal effect estimator is
EY|Z=1)-EX|Z=0) Ap _ Boa— B
ET|Z=1)-ET|Z=0) Ay 7,—m

LATE =

— Bov

» m is an estimate of Pr(7 = 1|Z = z), e.g. the chance of being

treated when above or below the threshold.
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RDD — examples

vy

Increasingly popular in Public Health/Epidemiology

HIV: The CD4 count is often used to deterimine drug assignment][1].
HPV: The date of birth of a woman (pre/post vaccine
availability)[4].

Prostate cancer: PSA is a chemical produced by the body and used
to determine treatment|[3].

Cholesterol: 10-year CVD risk score to determine statin
treatment[2].
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Problems with the LATE and Bayesian solutions

» The denominator of LATE can be very small (i.e. m, =~ )

» Informative priors on the relevant parameters can encode knowledge
and assumptions about these two probabilities so that the resulting
estimator does not explode to oo

Other advantages of Bayes

» Estimation of variances and intervals does not rely on asymptotics
— just a byproduct of MCMC procedures + can naturally include
more appropriate models (vs 2SLS)

» Can encode more complex models to account for different levels of
compliance in a straightforward manner
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Bayesian modelling: 1, = Sy + Buxj

1. Informative prior on the slopes, based on clinical expert opinions

Estimated prior predictive distribution of LDL cholesterol Estimated prior predictive distribution of LDL cholesterol
for a patient whose risk score = 0 for a patient whose risk score = 0.199
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B1 ~ Normal(my;, s2)), for suitable values of my; and s%,
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Bayesian modelling: 1; = By + Suxg

2. Informative priors on the intercepts:
Boy ~ Normal(mg, s5) and  Boa = Bob + ¢

» Weakly informative prior: ¢ ~ Normal(0,2)
» “Skeptical” prior on the effect of treatment, which is assumed to be
null

» Strongly informative prior: ¢ ~ Normal(—2,1)
» “Enthusiastic” prior, strongly based on the available information
coming from the RCTs (reduction of 2 mmol/I)}
» Relatively small variance to represent strong belief in the trials

'Ward et al (2007) [6]
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Bayesian modelling: logit(;)

2. Informative priors on the intercepts:
Bob ~ Normal(mg,s5) and  Boa = Bop + &

» Weakly informative prior: ¢ ~ Normal(0,2)
> “Skeptical” prior on the effect of treatment, which is assumed to be
null

» Strongly informative prior: ¢ ~ Normal(—2,1)
» “Enthusiastic” prior, strongly based on the available information
coming from the RCTs (reduction of 2 mmol/I)}
» Relatively small variance to represent strong belief in the trials

3. Informative prior on the probability of treatment:

logit(m,) ~ Normal(2,1), logit(mp) ~ Normal(—2,1)

» NB: implies that A, = m, — 7 is centered far from 0 but can vary
» Helps stabilise the denominator and thus the LATE

'Ward et al (2007) [6]
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Bayesian modelling: logit(m;)

RDD

Density

Prior density estimates for probability of treatment
above and below the threshold

—— Below Threshold
---- Above Threshold

Probability of treatment



Simulation study results

Bandwidth = 0.25 (fairly large!), Treatment effect size ~ Normal(—2,0.52)
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» Most of the RDD literature focusses on continuous outcomes, but
often in biostatistics, practitioners are interested in binary outcomes

Example

» Did LDL cholesterol levels drop to recommended levels after statin
prescription?

» Guidelines in the UK state that LDL cholesterol levels should be
below 2 mmol/| for patients who are at high risk (e.g. with multiple
co-morbidities)

» And below 3 mmol/I for low risk patients

» Using the same data we dichotomised the LDL cholesterol outcome
such that Y = 1 is LDL cholesterol levels are below 2mmol/I (or 3
mmol/l) and Y = 0 otherwise
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LDL cholesterol levels

Plot A Risk Score vs p(LDL<3) Plot B Risk Score vs p(T=1)
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Binary outcomes

» We can draw on the IV-based Multiplicative Structural Mean
Models (MSMMs), which consider the causal Risk Ratio for the
Treated (RRT)

EE.(Y | 2) | T =1]
EE(Y | 2) | T =1]

EY |Z=1)—E(Y |Z=0)
CE(YT|Z=1)-EXYT|Z=0)

RRT

when a set of assumptions holds (log-linear in ¢t + no T-Z multiplicative
interaction)[2]
> Known issues of standard estimators (e.g. generalised method of moments):
> May give absurd results (lower 95% interval estimate < 0)
> The data for the product term (YT') are usually sparse =
implausibly wide interval estimates
> Can “fix" it by using suitable constraints — similar to those used to
stabilise the denominator of the LATE in the continuous case

RDD 21/28



Constraining the models (1)

» The RRT is expressed as a function of a set of parameters (in the
same spirit as the LATE)

RRT = f (exp(aq) — exp(aw))

where:

> «, and «y are the intercepts in the log-linear models for
EY|Z=1)andEY | Z=0)

» For convenience, model y;; ~ Poisson(u;) — consistent with MSMM
assumptions

P> Typically, we would put priors on o, and «y, which would induce a
prior on RRT
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Constraining the models (1)

» The RRT is expressed as a function of a set of parameters (in the
same spirit as the LATE)

RRT = f (exp(aa) — exp(ap))

where:

> «a, and a; are the intercepts in the log-linear models for
EY|Z=1)andEY | Z=0)

> For convenience, model y;; ~ Poisson(u;;) — consistent with MSMM
assumptions

P> Typically, we would put priors on o, and «y, which would induce a
prior on RRT

> But: can also put a prior on RRT to ensure that it is > 0 and
another on «,. This would then induce a prior on oy, e.g.

RRT ~ Gamma(3,1) aq ~ plag) and ap = g (RRT, ag)
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Results

A) Low confounding, Strong IV, RR= 4.48 B) High confounding, Weak IV, RR=2.11
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Sensitivity/Range analysis

» For both continuous and binary outcomes we have developed a
number of estimators which are based on slightly different
assumptions about e.g. how the denominator works or whether data
are sparse

» All of them (and indeed the standard RDD/IV estimators) should
be used in any real context

» In a best case scenario all of the estimates have substantial overlap
(as was the case in our application)

» When they do not then certainly prefer the ones we develop(!) and
use the simulations to understand why there are discrepancies

» | am always reluctant to give a single point estimate with a credible
interval — plausible ranges are better
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There is a lot of potential for making RDDs less opportunistic and more
systematic

Picture this...

| 4
| 2

Imagine there is a new drug on the market - it's passed trials etc

The NHS wants to know: where do we set the threshold to optimise
benefits (minimise cost?)

Some rough idea comes from trials but we know they have low
external validity

Run 3/4 RDDs with different thresholds in different sub-populations

Is this any less ethical than changing the guidelines as evidence from
primary care emerges?
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Conclusions

» “Real World Evidence" (i.e. Electronic Health Record data) is
increasingly popular in research
» Causal estimates are still tricky because of issues with self-selection,
confounding, etc
» Useful to (critically!) explore specific designs to balance
characteristics

» RDD
P Interrupted time series
|
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Conclusions

» “Real World Evidence" (i.e. Electronic Health Record data) is
increasingly popular in research
» Causal estimates are still tricky because of issues with self-selection,
confounding, etc
> Useful to (critically!) explore specific designs to balance
characteristics
> RDD

» Interrupted time series
> .

» Bayesian modelling particularly helpful
» Because data are available in registries, administrative databases,
there are likely to be RCTs (may be on small samples/time frames)
to base priors on
» Design alone may not be sufficient to obtain balance — may need to
impose constraints = explicit and typically relatively easy in a full
Bayesian framework
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Thank you!
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