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Background

• Precision medicine 

• Few patients: how to reach a conclusion on treatment efficacy ?

• Eliciting experts opinions: bring prior information to add to the data using 
Bayesian inference

• Combining multiple experts opinions (distributions): synthesize information

How should distributions be combined?



Objective

• To compare existing approaches of distribution combination, and give 
recommendations

• Approaches to be compared:

oCombination approaches based on averaging

oCombination approaches based on modelling

• Simulation: Impact of parameters on combined distribution



Methods



Two Ear-Nose-Throat surgeons and six oncologists interviewed about 𝜃 = proportion of 
patients without progression after 8 weeks of treatment (reference chemotherapy or 
anti-PD1 monoclonal antibody), for an ENT epidermoid carcinoma

• Roulette method: each expert put 19 coins on a grid to represent his/her 
opinion on 𝜃 plausible values

• Empirical distribution 𝑭𝒋(𝜽)= raw values

• Beta distributions 𝒑𝒋(𝜽) fitted by minimization of the Cramer Von Mises 
distance 
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Clinical application context and elicitation



Combination approaches based on averaging

• 1st possibility: calculate the arithmetic mean 𝑝(𝜃)  of individual 
distributions 𝑝𝑗(θ), with n as the number of experts: 
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• 2nd possibility: calculate the geometric mean, then normalize the 
combined distribution (constant ν): 
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Combination approaches based on modelling

• Principle: Experts estimate the target parameter and uncertainty

𝐹𝑗(𝜃) Logit(𝜃𝑗)                Fitting of 𝑁(𝑚𝑗 , 𝑠𝑗)

mj = estimate of the target parameter, and 

sj = uncertainty about it 

• The summary parameters mj and sj are combined using different models 

• Distributions for the model parameters obtained by Bayesian inference 
(using vague priors)



Model without variability between experts

• Fixed effect model: considers that the experts 
give their opinion on a single parameter, 𝜃

variability between mj values = measurement error

• Combined distribution: Posterior Distribution of 
𝛍 (after antilogit transformation)

σj estimated by sj

(Fixed Mod.)

- Logical link:

logit θ = μ

- Stochastic link:

mj~N(μ, σj)



Model allowing for variability between experts

• Mixed effect model: considers that the 
experts give their opinion on a different 
parameter value, denoted θj

- Logical link :

logit θj = μ + bj = μj

- Stochastic links :

mj~N(μj, σj)

bj~N(0, σbetween)

𝜎𝑗 estimated by 𝑠𝑗



Model allowing for variability between experts

How to integrate opinion variability 
between experts within the combined 
distribution?



Model allowing for variability between experts

Combined distribution - two possibilities 
(after antilogit transformation): 

• Distribution of 𝝁: model the uncertainty on 
the mean of the distribution of 𝜇𝑗 among 

experts

• Distribution of 𝝁𝒋: model the uncertainty 

around any individual value of 𝜇𝑗, so a 

greater uncertainty due to inter-expert 
variability

(Mixed mod. 𝝁)

(Mixed mod. 𝝁𝒋)



Simulations

• Four scenarios in which the following parameters varied:  
o Number of experts n
o Variability between their opinions 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
Examination of their influence on combined distributions (all approaches)

• n expert distributions N mj, σj
o 𝑚𝑗 generated from the model allowing for variability between experts 

(evaluated treatment)
o 𝜎𝑗 fixed to the mean of sj

• Combined distributions compared in terms of average width of 95% credibility 
intervals



Results



Real experts data: 95% CI and means of the 
combined obtained distributions

Evaluated treatment



Simulations: 95% CI average width for each 
approach/scenario

Evaluated treatment
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Simulations: 95% CI average width for each 
approach/scenario

Evaluated treatment
𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛 low    𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛 high𝑛 low (=10) 𝑛 high (=40)

n increases:

CI width
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Fixed mod.     

Mixed mod. µ

Mixed mod. µ𝑗



Discussion



Arithmetic mean

• Represents diversity among expert opinions 

• Combined distribution is highly dispersed

• Adding experts to a study increases the CI width  = Not expected



Geometric mean

• Forces consensus between experts on 𝜃 value

• Less dispersed than with the arithmetic means

• No effect of n and 𝝈𝒊𝒏𝒕𝒆𝒓 = Not expected



Fixed effect model

• Least dispersed combined distribution

• Information provided by the experts is cumulative

• Possible to obtain the true value of 𝜃 with a very large panel of experts (the 

dispersion tends to 0) = Not expected



Mixed effect model - distribution of µ  

• A bit more dispersed than with fixed effect model

• Possible to obtain the true value of 𝜃 with a very large panel of experts (the 

dispersion tends to 0) = Not expected



Mixed effect model - distribution of µ𝒋

• Dispersed combined distribution

• Integrates directly variability between experts in the combined distributions

• n increases: CI width decreases, but reaches the value of 𝝈𝒃𝒆𝒕𝒘𝒆𝒆𝒏 instead of 0



Conclusion

This work clarifies the interpretation of different combination approaches

Recommended approach: Distribution of 𝛍𝐣 obtained using a mixed model 

• Take into account variability among expert opinions

• Information on the parameter value increases with the number of experts



Thank you


