

Combination of prior distributions elicited from expert opinions previous to Bayesian inference. Application to precision medicine.

Angely Loubert, PharmD, MSc

Coauthors: Muriel Rabilloud, Marie-Laure Delignette Muller, Fabien Subtil

Background

- Precision medicine
- Few patients: how to reach a conclusion on treatment efficacy ?
- Eliciting experts opinions: bring *prior* information to add to the data using Bayesian inference
- Combining multiple experts opinions (distributions): synthesize information

How should distributions be combined?

Objective

- To compare existing approaches of distribution combination, and give recommendations
- Approaches to be compared:

 Combination approaches based on averaging
 Combination approaches based on modelling
- Simulation: Impact of parameters on combined distribution

Methods

Clinical application context and elicitation

Two Ear-Nose-Throat surgeons and six oncologists interviewed about θ = proportion of patients without progression after 8 weeks of treatment (reference chemotherapy or anti-PD1 monoclonal antibody), for an ENT epidermoid carcinoma

• Roulette method: each expert put 19 coins on a grid to represent his/her opinion on θ plausible values

- Empirical distribution $F_i(\theta)$ = raw values
- Beta distributions $p_j(\theta)$ fitted by minimization of the Cramer Von Mises distance

Combination approaches based on averaging

• 1st possibility: calculate the arithmetic mean $p(\theta)$ of individual distributions $p_j(\theta)$, with n as the number of experts:

$$p(\theta) = \sum_{j=1}^{n} \frac{1}{n} p_j(\theta) \qquad \text{(Arithm. mean)}$$

2nd possibility: calculate the geometric mean, then normalize the combined distribution (constant v):

$$p(\theta) = v \prod_{j=1}^{n} p_j(\theta)^{\frac{1}{n}}$$
 (Geom. mean)

Combination approaches based on modelling

• Principle: Experts estimate the target parameter and uncertainty

$$F_j(\theta) \longrightarrow \text{Logit}(\theta_j) \longrightarrow \text{Fitting of } N(m_j, s_j)$$

 m_{j} = estimate of the target parameter, and s_{j} = uncertainty about it

- The summary parameters m_i and s_i are combined using different models
- Distributions for the model parameters obtained by Bayesian inference (using vague priors)

Model without variability between experts

• Fixed effect model: considers that the experts give their opinion on a single parameter, θ

- variability between m_i values = measurement error
 - Logical link: -

$$logit(\theta) = \mu$$

```
\sigma_i estimated by s_i
```

- Stochastic link: _ $m_i \sim N(\mu, \sigma_i)$
- Combined distribution: Posterior Distribution of μ (after antilogit transformation)

(Fixed Mod.)

Model allowing for variability between experts

- Mixed effect model: considers that the experts give their opinion on a different parameter value, denoted θ_i
 - Logical link :

 $logit(\theta_j) = \mu + b_j = \mu_j$

- Stochastic links : $m_j \sim N(\mu_j, \sigma_j)$ $b_j \sim N(0, \sigma_{between})$
 - σ_j estimated by s_j

Model allowing for variability between experts

How to integrate opinion variability between experts within the combined distribution?

Model allowing for variability between experts

Combined distribution - two possibilities (after antilogit transformation):

- Distribution of μ : model the uncertainty on the mean of the distribution of μ_j among experts (Mixed mod. μ)
- Distribution of μ_j : model the uncertainty around any individual value of μ_j , so a greater uncertainty due to inter-expert variability (Mixed mod. μ_j)

Simulations

- Four scenarios in which the following parameters varied:
 - Number of experts n
 - \circ Variability between their opinions $\sigma_{between}$

Examination of their influence on combined distributions (all approaches)

- n expert distributions $N(m_j, \sigma_j)$
 - $\circ m_j$ generated from the model allowing for variability between experts (evaluated treatment)
 - $\circ \sigma_j$ fixed to the mean of $\mathrm{s_j}$
- Combined distributions compared in terms of average width of 95% credibility intervals

Results

Real experts data: 95% CI and means of the combined obtained distributions

Simulations: 95% CI average width for each approach/scenario

Simulations: 95% CI average width for each approach/scenario

Discussion

Arithmetic mean

- **Represents diversity** among expert opinions
- Combined distribution is **highly dispersed**
- Adding experts to a study **increases the CI width** = **Not expected**

Geometric mean

- Forces consensus between experts on θ value
- Less dispersed than with the arithmetic means
- No effect of n and σ_{inter} = Not expected

Fixed effect model

- Least dispersed combined distribution
- Information provided by the experts is cumulative
- Possible to obtain the true value of θ with a very large panel of experts (the dispersion tends to 0) = Not expected

Mixed effect model - distribution of $\boldsymbol{\mu}$

- A bit more dispersed than with fixed effect model
- Possible to obtain the true value of θ with a very large panel of experts (the dispersion tends to 0) = Not expected

Mixed effect model - distribution of μ_j

- **Dispersed** combined distribution
- Integrates directly variability between experts in the combined distributions
- n increases: CI width decreases, but reaches the value of $\sigma_{between}$ instead of 0

Conclusion

This work clarifies the interpretation of different combination approaches

Recommended approach: Distribution of μ_i obtained using a mixed model

- Take into account variability among expert opinions
- Information on the parameter value increases with the number of experts

Thank you